福田の数学〜中央大学2024経済学部第1問(4)〜タンジェントの加法定理 - 質問解決D.B.(データベース)

福田の数学〜中央大学2024経済学部第1問(4)〜タンジェントの加法定理

問題文全文(内容文):
・ $\tan\alpha=2,\tan\beta=3$のとき$\alpha+\beta$を求めよ。ただし、$0 < \alpha < \dfrac\pi2,0 < \beta < \dfrac\pi2$とする。
・ $\tan\alpha=2,\tan\beta=5,\tan\gamma=8$のとき$\alpha+\beta+\gamma$を求めよ。ただし、$\alpha,\beta,\gamma$は鋭角とする。
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
・ $\tan\alpha=2,\tan\beta=3$のとき$\alpha+\beta$を求めよ。ただし、$0 < \alpha < \dfrac\pi2,0 < \beta < \dfrac\pi2$とする。
・ $\tan\alpha=2,\tan\beta=5,\tan\gamma=8$のとき$\alpha+\beta+\gamma$を求めよ。ただし、$\alpha,\beta,\gamma$は鋭角とする。
投稿日:2024.08.09

<関連動画>

福田の数学〜早稲田大学2021年理工学部第1問〜2直線のなす角の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $xy$平面上の曲線$y=x^3$を$C$とする。$C$上の2点$A(-1,-1), B(1,1)$をとる。
さらに、$C$上で原点$O$と$B$の間に動点$P(t,t^3)(0 \lt t \lt 1)$をとる。このとき、
以下の問いに答えよ。
(1)直線$AP$と$x$軸のなす角を$\alpha$とし、直線$PB$と$x$軸のなす角を$\beta$とするとき、
$\tan\alpha,\tan\beta$を$t$を用いて表せ。ただし、$0 \lt \alpha \lt \displaystyle \frac{\pi}{2},\ 0 \lt \beta \lt \displaystyle \frac{\pi}{2}$とする。

(2)$\tan\angle APB$を$t$を用いて表せ。

(3)$\angle APB$を最小にする$t$の値を求めよ。

2021早稲田大学理工学部過去問
この動画を見る 

福田の一夜漬け数学〜多変数関数、1文字固定その2(受験編)

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\triangle ABC$において次の不等式を示せ。
(1)$\cos A+\cos B+\cos C \leqq \frac{3}{2}$
(2)$\cos A\cos B \cos C \leqq \frac{1}{8}$
この動画を見る 

【高校数学】三角関数⑨~今までの応用~ 4-11【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 0≦θ<2πのとき、次の関数の最大値と最小値を求めよ。
  そのときのθの値を求めよ。
  y=cos²θ-4sinθ+2

(2) 0≦θ<2πのとき、次の方程式を満たすθの値を求めよ。
  2sin²θ-5cosθ+5=0
この動画を見る 

2倍角の公式を導く!!(数II)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2倍角の公式の証明
以下を求めよ。
$\sin2\alpha=??$
$\cos2\alpha=??$
$\tan2\alpha=??$
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(2)〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)座標平面上に2点$A(\frac{5}{8},0),\ B(0,\frac{3}{2})$をとる。Lは原点を通る直線で、Lが
x軸の正の方向となす角$\thetaは0 \leqq \theta \leqq \frac{\pi}{2}$の範囲にあるとする。ただし、角$\theta$の
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を
$d_A$、点Bと直線Lの距離を$d_B$とおく。このとき、

$d_A+d_B=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\sin\theta+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\cos\theta$
である。$\theta$が$0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき、
$d_A+d_B$の最大値は$\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
最小値は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。

2021明治大学理工学部過去問
この動画を見る 
PAGE TOP