福田のわかった数学〜高校3年生理系087〜グラフを描こう(9)媒介変数表示のグラフ - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系087〜グラフを描こう(9)媒介変数表示のグラフ

問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(9)
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t\cos t-\sin t\\
y=t\sin t+\cos t
\end{array}
\right.
(0 \leqq t \leqq 2\pi)
\end{eqnarray}$
のグラフを描け。ただし凹凸は調べなくてよい。
単元: #平面上の曲線#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(9)
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t\cos t-\sin t\\
y=t\sin t+\cos t
\end{array}
\right.
(0 \leqq t \leqq 2\pi)
\end{eqnarray}$
のグラフを描け。ただし凹凸は調べなくてよい。
投稿日:2021.10.23

<関連動画>

高専数学 微積I #242(2) 媒介変数表示曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq 2\pi$とする.
曲線$x=e^{-t}\cos t,y=e^{-t}\sin t$
の長さ$\ell$を求めよ.
この動画を見る 

高専数学 微積I #243(1) 媒介変数曲線(x軸回転体)

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$-1\leqq t\leqq 1$である.
曲線$x=t^3,y=t^2-1$と$x$軸で囲まれた
図形を$x$軸中心に回転した体積$V$を求めよ.
この動画を見る 

高専数学 微積I #243(2) 媒介変数表示関数のx軸回転体

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0 \leqq t \leqq 1$である.
曲線$x=t^2,y=e^t$
$x$軸,$y$軸,直線$x=1$で囲まれた図形を
$x$軸を中心とした回転体の体積$V$を求めよ.
この動画を見る 

福田の数学〜北海道大学2024年理系第1問〜点の一致条件と軌跡

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $t$を実数とし、$xy$平面上の点P($\cos 2t$, $\cos t$)および点Q($\sin t$, $\sin 2t$)を考える。
(1)点Pと点Qが一致するような$t$の値をすべて求めよ。
(2)$t$が0<$t$<$2\pi$ の範囲で変化するとき、点Pの軌跡を$xy$平面上に図示せよ。
ただし、$x$軸、$y$軸との共有点がある場合は、それらの座標を求め、図中に記せ。
この動画を見る 

福田のわかった数学〜高校2年生041〜軌跡(8)媒介変数表示の軌跡(1)

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 軌跡(8) 媒介変数表示(1)
$\left\{\begin{array}{1}
x=2\cos\theta+\sin\theta\\
y=\cos\theta-2\sin\theta
\end{array}\right.  
(0 \leqq \theta \leqq \pi)$
を満たす$(x,y)$の軌跡を図示せよ。
また、$0 \leqq \theta \leqq \frac{3}{2}\pi$のときはどうか。
この動画を見る 
PAGE TOP