問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \int_{(k-1)π}^{ kπ } |e^{-x}sinx| dx$を求めて下さい。
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \int_{(k-1)π}^{ kπ } |e^{-x}sinx| dx$を求めて下さい。
単元:
#積分とその応用#面積・体積・長さ・速度#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \int_{(k-1)π}^{ kπ } |e^{-x}sinx| dx$を求めて下さい。
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \int_{(k-1)π}^{ kπ } |e^{-x}sinx| dx$を求めて下さい。
投稿日:2024.09.11





