福田の数学〜ベクトルの3項間漸化式だって?〜慶應義塾大学2023年商学部第3問〜ベクトルと漸化式 - 質問解決D.B.(データベース)

福田の数学〜ベクトルの3項間漸化式だって?〜慶應義塾大学2023年商学部第3問〜ベクトルと漸化式

問題文全文(内容文):
平面上に3点$O,P_{1},P_{2}$が、$|\overrightarrow{OP_{1}}|=\sqrt{6}$,$|\overrightarrow{OP_{2}}|=\dfrac{\sqrt{30}}{5}$,$\overrightarrow{OP_{1}}\bot\overrightarrow{OP_{2}}$となるように与えられている。また、点Oから直線$P_{1}P_{2}$との交点をHとする。さらに平面上に点$P_{3},P_{4},P_{5}$,・・・を、n=1,2,3,・・・に対し、点$P_{n+2}$が点$P_{n}$tと$点P_{n+1}$を結ぶ線分$P_{n}P_{n+1}$を4:1に内分するように定める。
(1)$\overrightarrow{OP_{1}}$と$\overrightarrow{OP_{2}}$を使って、$\overrightarrow{OH}$を表すと$\overrightarrow{OH}=\fbox{(ア)}$である。
(2)$\overrightarrow{P_{1}P_{2}}$を使って、$\overrightarrow{HP_{n}}$をnを用いた式で表すと$\overrightarrow{HP_{n}}=\fbox{(イ)}$である。
(3)ベクトルを使わずに、$\overrightarrow{|OP_{n}|^2}$をnを用いた式で表すと$\overrightarrow{|OP_{n}|^2}$である。

2023慶應義塾大学商学部過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
平面上に3点$O,P_{1},P_{2}$が、$|\overrightarrow{OP_{1}}|=\sqrt{6}$,$|\overrightarrow{OP_{2}}|=\dfrac{\sqrt{30}}{5}$,$\overrightarrow{OP_{1}}\bot\overrightarrow{OP_{2}}$となるように与えられている。また、点Oから直線$P_{1}P_{2}$との交点をHとする。さらに平面上に点$P_{3},P_{4},P_{5}$,・・・を、n=1,2,3,・・・に対し、点$P_{n+2}$が点$P_{n}$tと$点P_{n+1}$を結ぶ線分$P_{n}P_{n+1}$を4:1に内分するように定める。
(1)$\overrightarrow{OP_{1}}$と$\overrightarrow{OP_{2}}$を使って、$\overrightarrow{OH}$を表すと$\overrightarrow{OH}=\fbox{(ア)}$である。
(2)$\overrightarrow{P_{1}P_{2}}$を使って、$\overrightarrow{HP_{n}}$をnを用いた式で表すと$\overrightarrow{HP_{n}}=\fbox{(イ)}$である。
(3)ベクトルを使わずに、$\overrightarrow{|OP_{n}|^2}$をnを用いた式で表すと$\overrightarrow{|OP_{n}|^2}$である。

2023慶應義塾大学商学部過去問
投稿日:2023.11.28

<関連動画>

#高知工科大学2020 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高知工科大学
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{1}^{\sqrt{ e }} \displaystyle \frac{(log x)^3}{x} dx$

出典:2020年高知工科大学
この動画を見る 

福田の1.5倍速演習〜合格する重要問題028〜九州大学2016年度文理共通問題〜余りと合同式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#茨城大学
指導講師: 福田次郎
問題文全文(内容文):
自然数nに対して、$10^n$を13で割った余りを$a_n$とおく。$a_n$は0から12まで
の整数である。以下の問いに答えよ。
(1)$a_{n+1}$は$10a_n$を13で割った余りに等しいことを示せ。
(2)$a_1,a_2,a_3,\cdots,a_6$を求めよ。
(3)以下の3条件を満たす自然数Nをすべて求めよ。
$(\textrm{i})N$を十進法で表示した時6桁となる。
$(\textrm{ii})N$を十進法で表示して、最初と最後の桁の数字を取り除くと
2016となる。
$(\textrm{iii})N$は13で割り切れる。

2016九州大学文理過去問
この動画を見る 

大学入試問題#124 高知大学(2020) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{7}{2}}^{\frac{9}{2}}\displaystyle \frac{2^x}{2^x+\sqrt{ 2 }}\ dx$を計算せよ。

出典:2020年高知大学 入試問題
この動画を見る 

【高校数学】毎日積分62日目~47都道府県制覇への道~【⑥長崎】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$ a,b$を定数とする。すべての実数$x$で連続な関数$f(x)$について、等式
$\displaystyle\int_a^bf(x)dx = \displaystyle\int_a^bf(a+b-x)dx$
が成り立つことを証明せよ。また、定積分$\displaystyle\int_1^2\frac{x^2}{x^2+(3-x)^2}dx$を求めよ。
【長崎大学 2023】
この動画を見る 

大学入試問題#263 山形大学(2011) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi}x\sin^2x\ dx$を求めよ。

出典:2011年山形大学 入試問題
この動画を見る 
PAGE TOP