【数B】空間ベクトル:原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。 - 質問解決D.B.(データベース)

【数B】空間ベクトル:原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。

問題文全文(内容文):
原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:13 問題解説
2:34 名言

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。
投稿日:2020.10.21

<関連動画>

【数C】【空間ベクトル】3点A(3,6,0)、B(1,4,0)、C(0,5,4)の定める平面ABCに、点P(3,4,5)から垂線PHを下ろす。線分PHの長さを求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(3,6,0)、B(1,4,0)、C(0,5,4)の定める平面ABCに、点P(3,4,5)から垂線PHを下ろす。線分PHの長さを求めよ。
この動画を見る 

福田の数学〜青山学院大学2023年理工学部第1問〜空間ベクトルとと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 座標空間の3点A(0,1,2), B(3,-2,2), C(-1,4,1)が定める平面を$\alpha$とする。
原点Oから平面$\alpha$に垂線を下ろし、$\alpha$との交点をHとする。
(1)$\overrightarrow{AB}$・$\overrightarrow{AC}$=$\boxed{\ \ アイウ\ \ }$
(2)$\triangle$ABCの面積は$\frac{\boxed{\ \ エ\ \ }\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}$である。
(3)$\overrightarrow{AH}$=$\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ クケ\ \ }}$$\overrightarrow{AB}$+$\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$$\overrightarrow{AC}$, $\overrightarrow{OH}$=$\frac{\boxed{\ \ シ\ \ }\sqrt{\boxed{\ \ ス\ \ }}}{\boxed{\ \ セ\ \ }}$
(4)四面体OHBCの体積は$\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}$である。
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第4問〜正四面体の位置ベクトルと面積体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $p$,$q$を正の実数とし、Oを原点とする座標空間内に3点A(3,$-\sqrt 3$,0),B(3,$\sqrt 3$,0),C($p$,0,$q$)をとる。ただし、四面体OABCは1辺の長さが$2\sqrt 3$の正四面体であるとする。
(1)$p$および$q$の値を求めよ。
以下、点$\displaystyle\left(\frac{3}{2},0,\frac{q}{2}\right)$に関してO,A,B,Cと対称な点を、それぞれD,E,F,Gとする。
(2)直線DGと平面ABCとの交点Hの座標を求めよ。
(3)直線CBと平面DEGとの交点をI、直線CAと平面DFGとの交点をJとする。
四角形CJHIの面積$S$と四角錐G-CJHIの体積$V$を、それぞれ求めよ。
この動画を見る 

数学「大学入試良問集」【14−10空間ベクトルと正四面体】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
各辺の長さが1の正四面体$OABC$に対し、$OB$を$2:1$に内分する点を$D,OC$を2等分する点を$E,BC$を2等分にする点を$F$とする。
$DE$と$OF$の交点を$G$とするとき、以下の各問いに答えよ。
(1)$OG$の長さを求めよ。
(2)$AG$の長さを求めよ。
この動画を見る 

福田の数学〜立教大学2025経済学部第1問(6)〜2つのベクトルの両方に垂直なベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(6)空間のベクトル$\vec{ p}=(x,y,z)$は

$\vec{b}=(0,3,2)$の両方に垂直であり、

$\vec{\vert p \vert}=7$かつ$z \gt 0$を

満たしている。

このとき、$\vec{p}=(\boxed{ク},\boxed{ケ},\boxed{コ})$である。

$2025$年立教大学経済学部過去問題
この動画を見る 
PAGE TOP