【中1 数学】 中1-50 反比例のグラフを書く - 質問解決D.B.(データベース)

【中1 数学】  中1-50  反比例のグラフを書く

問題文全文(内容文):
中1 数学 反比例のグラフを書く
以下の問に答えよ
・反比例のグラフは①____っていうよ!
◎グラフを書こう!!
② $y = \frac{6}{x}$
③ $y = - \frac{4}{x}$
④ $y = \frac{12}{x}$
※図は動画内参照
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中1 数学 反比例のグラフを書く
以下の問に答えよ
・反比例のグラフは①____っていうよ!
◎グラフを書こう!!
② $y = \frac{6}{x}$
③ $y = - \frac{4}{x}$
④ $y = \frac{12}{x}$
※図は動画内参照
投稿日:2012.11.15

<関連動画>

約分して0!

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{x}{x}=$
この動画を見る 

【中学数学】加法・減法をどこよりも分かりやすく~交換法則・結合法則~ 1-3【中1数学】

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
\begin{eqnarray}
(1)\ (+3) + (+2)
\end{eqnarray}
\begin{eqnarray}
(2)\ (-7) + (-2)
\end{eqnarray}
\begin{eqnarray}
(3)\ (+6) + (-3)
\end{eqnarray}
\begin{eqnarray}
(4)\ (-9) + (+3)
\end{eqnarray}
\begin{eqnarray}
(5)\ (+6) + (-3)
\end{eqnarray}
\begin{eqnarray}
(6)\ (+7) - (+20)
\end{eqnarray}
\begin{eqnarray}
(7)\ (-12) - (+5)
\end{eqnarray}
\begin{eqnarray}
(8)\ (-3) - (+8)
\end{eqnarray}
この動画を見る 

【5分で完全理解!】空間図形:山形県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#空間図形#山形県公立高等学校#山形県立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 山形県の公立高等学校

$OH$の長さを求めなさい。

正四角すい$OABCD :$

$AB=6cm$
点$M$:辺$BC$の中点
$OM=9cm$

四角形$ABCD$の$2$つの対角線 $AC$、$BD$の交点を$H$とする。
※図は動画内参照
この動画を見る 

気付けばスッキリ!~机の上のコインの問題~

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
机の上にたくさんのコインが置いてます。そのうち10枚だけ表、残りは全部裏が上になっています。
目隠しをした状態で表が上になっているコインの枚数が同じような2つのグループに分けるにはどうすればよいか?
ただし、触って表裏の判断はできないとする
この動画を見る 

【高校受験対策/数学】死守-85

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#正の数・負の数#方程式#平方根#2次方程式#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守85 @4:15

①$2-(3-8)$を計算しなさい。

②$(\frac{1}{3}-\frac{3}{4})÷\frac{5}{6}$を計算しなさい。

③$(-4x)^2÷12xy×9xy^2$を計算しなさい。

④$\sqrt{18}-\frac{10}{\sqrt{ 2 }}$を計算しなさい。

⑤2次方程式$(x-4)(3x+2)=8x-5$を解きなさい。

⑥右の図のように、底面が直角三角形で、側面がすべて長方形の三角柱があり、$AB=6cm$、$BE=4cm$、$\angle ABC=30°$、$\angle ACB=90°$である。
この三角柱の体積を求めなさい。

⑦空間内にある平面$P$と、異なる2直線$l,m$の位置関係について、
つねに正しいものを、次のア~エから1つ選び記号で答えなさい。

ア 直線$l$と直線$m$が、それぞれ平面$P$と交わるならば、直線$l$と直線$m$は交わる。
イ 直線$l$と直線$m$が、それぞれ平面$P$と平行ならば、直線$l$と直線$m$は平行である。
ウ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と垂直であるならば、平面$P$と直線$l$は垂直である。
エ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と交わらないならば、直線$l$と直線$m$はねじれの位置にある。
この動画を見る 
PAGE TOP