大学入試問題#613「微分してたら、時間かかるだろうな~~」 慶應義塾大学(1996) - 質問解決D.B.(データベース)

大学入試問題#613「微分してたら、時間かかるだろうな~~」 慶應義塾大学(1996)

問題文全文(内容文):
$\displaystyle \frac{10x-x^2}{(10+10x-x^2)^2}$の最大値を求めよ

出典:1996年慶應義塾大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{10x-x^2}{(10+10x-x^2)^2}$の最大値を求めよ

出典:1996年慶應義塾大学 入試問題
投稿日:2023.08.11

<関連動画>

福田の数学〜筑波大学2023年理系第4問〜定積分と不等式と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#体積・表面積・回転体・水量・変化のグラフ#数学(高校生)#筑波大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ a, bを実数とし、$f(x)$=$x$+$a\sin x$, $g(x)$=$b\cos x$とする。
(1)定積分$\displaystyle\int_{-\pi}^{\pi}$$f(x)g(x)dx$ を求めよ。
(2)不等式$\displaystyle\int_{-\pi}^{\pi}$$\left\{f(x)+g(x)\right\}^2dx$≧$\displaystyle\int_{-\pi}^{\pi}$$\left\{f(x)\right\}^2dx$ が成り立つことを示せ。
(3)曲線$y$=|$f(x)$+$g(x)$|、2直線$x$=$-\pi$, $x$=$\pi$、および$x$軸で囲まれた図形を$x$軸の周りに1回転させてできる回転体の体積をVとする。このとき不等式
V≧$\displaystyle\frac{2}{3}r^2$$(r^2-6)$
が成り立つことを示せ。さらに、等号が成立するときのa, bを求めよ。

2023筑波大学理系過去問
この動画を見る 

大学入試問題#254 神戸大学2012 #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$2 \leqq n$自然数
$\displaystyle \int_{n}^{n^3}\displaystyle \frac{dx}{x\ log\ x}$を計算せよ。

出典:2012年神戸大学 入試問題
この動画を見る 

大学入試問題#608「絶対値・・・・」 横浜市立大学(2009) #定積分

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#三角関数#三角関数とグラフ#加法定理とその応用#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} |\sin2\ x| \sin\ x\ dx$

出典:2009年横浜市立大学 入試問題
この動画を見る 

#奈良教育大学(2014) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} |e^x-e| dx$

出典:2014年奈良教育大学
この動画を見る 

【数Ⅲ】【積分とその応用】定積分の種々の問題2 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数を$x$について微分せよ。
(1) $\displaystyle y=\int_x^{2x}\cos^2t~dt$

(2) $\displaystyle y=\int_x^{x^2}e^t\sin t~dt$
この動画を見る 
PAGE TOP