山口東京理科大 円の方程式 軌跡 - 質問解決D.B.(データベース)

山口東京理科大 円の方程式 軌跡

問題文全文(内容文):
点$(s,t)$が$x^2+y^2=\displaystyle \frac{1}{2}$の上を動くとき、$(s+t,st)$を座標とする点の軌跡を図示せよ

出典:山口東京理科大学 過去問
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
点$(s,t)$が$x^2+y^2=\displaystyle \frac{1}{2}$の上を動くとき、$(s+t,st)$を座標とする点の軌跡を図示せよ

出典:山口東京理科大学 過去問
投稿日:2020.03.10

<関連動画>

ただの約分

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{1+2+3+4+8+・・・・・・+2^{2024}}{1+8+64+512+・・・・・・+2^{2022}}$
これを計算せよ.
この動画を見る 

神戸大 複素数の連立方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z\omega=z^3=\omega^4$を満たす複素数の組$(z,\omega)$の個数を求めよ.

1999神戸大過去問
この動画を見る 

大学入試問題#509「あえて三角関数」 自治医科大学(2023) #曲線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$x,\ 0 \leqq y$:実数
$\displaystyle \frac{x^2}{4}+\displaystyle \frac{y^2}{9}=1$を満たすとき
$5x+2y$の最大値を$M$、最小値を$m$とするとき$\sqrt{ M^2-m^2 }$を求めよ

出典:2023年自治医科大学 入試問題
この動画を見る 

変な方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \left(1+\dfrac{1}{x} \right)^{x+1}=\left(1+\dfrac{1}{11} \right)^{11}$
これを解け.
この動画を見る 

福田の数学〜中央大学2022年理工学部第2問〜三角関数と2直線のなす角

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$AB = 1, \angle ABC = 90°,\angle BCA = 7.5°$である$△ABC$ の辺BC 上に $AD = CD$ と
なるように点Dをとる。このとき、$BD = \boxed{コ}, CD=\boxed{サ}$である。したがって、
$\tan 7.5° =\frac{1}{\boxed{コ}+\boxed{サ}}$
次に、正の実数kに対して、2直線$y=3kx, y = 4kx$のなす角度を$θ$とする。
だし、$0° \lt θ \lt 90°$である。このとき、$\tanθ = \boxed{シ}$である。したがって、$\tanθ$ は
$k =\frac{1}{\boxed{ス}}$ のとき最大値$\frac{1}{\boxed{セ}}$ をとる。また、$k=\frac{1}{\boxed{ス}}$ のとき$\boxed{ソ}$を満たす。
なお、必要ならば
$\sqrt2 = 1.4, \sqrt3=1.7..., \sqrt5=2.2, \sqrt6=2.4...$
を用いてよい。

$\boxed{コ},\boxed{サ}$の解答群
$ⓐ\sqrt2+\sqrt3\ \ \ ⓑ\sqrt2+\sqrt5\ \ \ ⓒ\sqrt2+\sqrt6\ \ \ ⓓ2+\sqrt3$
$ⓔ2+\sqrt5\ \ \ ⓕ2+\sqrt6\ \ \ ⓖ\sqrt3+\sqrt5\ \ \ ⓗ\sqrt5+\sqrt6$

$\boxed{シ}$の解答群
$ⓐ\frac{k}{1-12k^2}\ \ \ ⓑ\frac{k}{1+12k^2}\ \ \ ⓒ\frac{7k}{1-12k^2}\ \ \ ⓓ\frac{7k}{1+12k^2}$
$ⓔ\frac{12k^2}{1-12k^2}\ \ \ ⓕ\frac{12k^2}{1+12k^2}$
$ⓖ\frac{12k^2}{1-7k^2}\ \ \ ⓗ\frac{12k^2}{1+7k^2}$

$\boxed{ス},\boxed{セ}$の解答群
$ⓐ2\ \ \ ⓑ2\sqrt2\ \ \ ⓒ3\ \ \ ⓓ2\sqrt3\ \ \ ⓔ4\ \ \ ⓕ3\sqrt2$
$ⓖ3\sqrt3 \ \ \ ⓗ4\sqrt2 \ \ \ ⓘ6\ \ \ ⓙ4\sqrt3 \ \ \ ⓚ7\ \ \ ⓛ7\sqrt2$

$\boxed{ソ}$の解答群
$ⓐθ \gt 7.5°\ \ \ ⓑθ = 7.5°\ \ \ ⓒθ \lt 7.5°$

2022中央大学理工学部過去問
この動画を見る 
PAGE TOP