【高校数学】 数Ⅱ-81 不等式の表す領域④ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-81 不等式の表す領域④

問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。

①$(x-2y)(x-2) \lt 0$

②$(x-y)(x^2+y^2-1) \geqq 0$

③$(4x-y+1)(2x+y-4) \gt 0$
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。

①$(x-2y)(x-2) \lt 0$

②$(x-y)(x^2+y^2-1) \geqq 0$

③$(4x-y+1)(2x+y-4) \gt 0$
投稿日:2015.07.18

<関連動画>

数検準1級1次(7番 極限値)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{7}$ $\displaystyle \lim_{x\to 0}\ \dfrac{1}{x}\left(\frac{1}{\sin x}-\dfrac{1}{\tan x}\right)$
これを解け.
この動画を見る 

#会津大学(2023) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{1} x\sqrt{ x+3 }\ dx$

出典:2023年会津大学
この動画を見る 

福田のおもしろ数学265〜直交する2つの円柱の共通部分の体積

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$
x軸、y軸を軸とする半径1の円柱T_1 , \ T_2の共通部分の体積を求めよ。$(図は動画参照)
この動画を見る 

【高校数学】 数Ⅱ-75 軌跡と方程式①

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たす点Pの軌跡を求めよう。

①y軸との距離が4である点P

②点(4.-1)からの距離が3である点P

③2点A(-1.0)、B(1.2)から等距離にある点P
この動画を見る 

福田の数学〜九州大学2023年文系第2問〜2直線のなす角と外接円の半径

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ xy平面上の曲線C:$y$=$x^3$-$x$ を考える。変数$t$>0に対して、曲線C上の点A($t$, $t^3$-$t$)における接線を$l$とする。直線$l$と直線$y$=-$x$の交点をB、三角形OABの外接円の中心をPとする。以下の問いに答えよ。
(1)点Bの座標を$t$を用いて表せ。
(2)θ=$\angle$OBAとする。$\sin^2\theta$を$t$を用いて表せ。
(3)$f(t)$=$\frac{OP}{OA}$とする。$t$>0のとき、$f(t)$を最小にする$t$の値と$f(t)$の最小値を求めよ。

2023九州大学文系過去問
この動画を見る 
PAGE TOP