福田の数学〜北海道大学2023年理系第3問〜指数方程式の解 - 質問解決D.B.(データベース)

福田の数学〜北海道大学2023年理系第3問〜指数方程式の解

問題文全文(内容文):
$\Large\boxed{3}$ 以下の問いに答えよ。ただし、eは自然対数の底を表す。
(1)kを実数の定数とし、f(x)=$xe^{-x}$とおく。方程式f(x)=kの異なる実数解の個数を求めよ。ただし、$\displaystyle\lim_{x \to \infty}f(x)$=0を用いてもよい。
(2)$xye^{-(x+y)}$=cを満たす正の実数x, yの組がただ1つ存在するときの実数cの値を求めよ。
(3)$xye^{-(x+y)}$=$\frac{3}{e^4}$を満たす正の実数x, yを考えるとき、yのとりうる値の最大値とそのときのxの値を求めよ。

2023北海道大学理系過去問
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 以下の問いに答えよ。ただし、eは自然対数の底を表す。
(1)kを実数の定数とし、f(x)=$xe^{-x}$とおく。方程式f(x)=kの異なる実数解の個数を求めよ。ただし、$\displaystyle\lim_{x \to \infty}f(x)$=0を用いてもよい。
(2)$xye^{-(x+y)}$=cを満たす正の実数x, yの組がただ1つ存在するときの実数cの値を求めよ。
(3)$xye^{-(x+y)}$=$\frac{3}{e^4}$を満たす正の実数x, yを考えるとき、yのとりうる値の最大値とそのときのxの値を求めよ。

2023北海道大学理系過去問
投稿日:2023.04.07

<関連動画>

福田の数学〜慶應義塾大学2024年薬学部第1問(2)〜3次関数の増減と方程式の解の個数

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)$a$,$b$,$c$を実数とし、実数$x$の関数$f(x)$を$f(x)$=$x^3$+$ax^2$+$bx$+$c$ とおく。
$f(x)$は$x$=-1で極値3をとり、方程式$f(x)$=0は$x$=-2を解にもつ。
(i)$a$=$\boxed{\ \ ウ\ \ }$, $b$=$\boxed{\ \ エ\ \ }$, $c$=$\boxed{\ \ オ\ \ }$である。
(ii)Kを実数とする。方程式$f(x)$=$4x$+K が持つ異なる実数解の個数が2個となるとき、Kの値は$\boxed{\ \ カ\ \ }$である。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題033〜浜松医科大学2016年度理系第3問〜指数方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。なお、必要があれば以下の極限値の公式を用いてもよい。
$\lim_{x \to \infty}\frac{x}{e^x}=0$
(1)方程式$2^x=x^2 (x \gt 0)$の実数解の個数を求めよ。
(2)aを正の実数とし、xについての方程式$a^x=x^a (x \gt 0)$を考える。
$(\textrm{a})$方程式$a^x=x^a (x \gt 0)$の実数解の個数を求めよ。
$(\textrm{b})$方程式$a^x=x^a (x \gt 0)$でa,xがともに正の整数となるa,xの組$(a,x)$
をすべて求めよ。ただし$a \ne x$とする。

2016浜松医科大学理系過去問
この動画を見る 

福田の数学〜北海道大学2025文系第4問〜関数方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

関数$f(x)$は、

すべての実数$x$およびすべての整数$n$について

$f(nx)={f(x)}^n$を満たし、

さらに$f(1)=2$を満たすとする。

ただし、$f(x)$のとりうる値は$0$でない実数とする。

(1)$f(n) \leqq 100$となるような最大の整数$n$を求めよ。

(2)すべての実数$x$について

$f(x)\gt 0$であることを証明せよ。

(3)$f(0.25)$を求めよ。

(4)$a$が有理数のとき、$f(a)$を$a$で表せ。

$2025$年北海道大学文系過去問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題090〜名古屋大学2018年度理系第1問〜定積分と不等式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数nに対し、定積分$I_n$=$\displaystyle\int_0^1\frac{x^n}{x^2+1}dx$を考える。このとき、次の問いに答えよ。
(1)$I_n$+$I_{n+2}$=$\frac{1}{n+1}$を示せ。
(2)0≦$I_{n+1}$≦$I_n$≦$\frac{1}{n+1}$を示せ。
(3)$\displaystyle\lim_{n \to \infty}nI_n$ を求めよ。
(4)$S_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{2k}$ とする。このとき(1), (2)を用いて$\displaystyle\lim_{n \to \infty}S_n$ を求めよ。

2018名古屋大学理系過去問
この動画を見る 

大学入試問題#436「2次試験までに一度は解くべき問題!!」 東京大学(1995) #不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
すべての正の実数$x,y$に対し、
$\sqrt{ x }+\sqrt{ y } \leqq k\sqrt{ 2x+y }$ が成り立つような実数$k$の最小値を求めよ

出典:1995年東京大学 入試問題
この動画を見る 
PAGE TOP