福田の数学〜北海道大学2023年理系第3問〜指数方程式の解 - 質問解決D.B.(データベース)

福田の数学〜北海道大学2023年理系第3問〜指数方程式の解

問題文全文(内容文):
$\Large\boxed{3}$ 以下の問いに答えよ。ただし、eは自然対数の底を表す。
(1)kを実数の定数とし、f(x)=$xe^{-x}$とおく。方程式f(x)=kの異なる実数解の個数を求めよ。ただし、$\displaystyle\lim_{x \to \infty}f(x)$=0を用いてもよい。
(2)$xye^{-(x+y)}$=cを満たす正の実数x, yの組がただ1つ存在するときの実数cの値を求めよ。
(3)$xye^{-(x+y)}$=$\frac{3}{e^4}$を満たす正の実数x, yを考えるとき、yのとりうる値の最大値とそのときのxの値を求めよ。

2023北海道大学理系過去問
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 以下の問いに答えよ。ただし、eは自然対数の底を表す。
(1)kを実数の定数とし、f(x)=$xe^{-x}$とおく。方程式f(x)=kの異なる実数解の個数を求めよ。ただし、$\displaystyle\lim_{x \to \infty}f(x)$=0を用いてもよい。
(2)$xye^{-(x+y)}$=cを満たす正の実数x, yの組がただ1つ存在するときの実数cの値を求めよ。
(3)$xye^{-(x+y)}$=$\frac{3}{e^4}$を満たす正の実数x, yを考えるとき、yのとりうる値の最大値とそのときのxの値を求めよ。

2023北海道大学理系過去問
投稿日:2023.04.07

<関連動画>

微分のよく出る問題!解けますか?【数学 入試問題】【東京電機大学】

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
曲線$y=\dfrac{\log(ax)}{x^2}$の傾きが$9e^2$の接線が原点を通るとき、正の定数$a$を求めよ。

東京電機大過去問
この動画を見る 

福田の数学〜早稲田大学2023年商学部第1問(1)〜面積計算と不等式の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(1)$n$を2以上の整数とする。整数$k$$\in$$\left\{1,2,...,n\right\}$に対し、$y$軸に平行な直線$x$=$2^{k-1}$と曲線$y$=$\log_2 x$の交点を$P_k$とする。このとき、線分$P_1P_2$, $P_2P_3$, ..., $P_{n-1}P_n$と直線$x$=$2^{n-1}$および$x$軸で囲まれる図形の面積を$S(n)$とする。不等式
$\displaystyle\frac{S(n)}{2^n}$≧2023
を満たす最小の$n$は$\boxed{\ \ ア\ \ }$である。
この動画を見る 

福田の数学〜九州大学2023年理系第4問〜加法定理が成り立つ関数を調べるPART1

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 以下の文章を読んで後の問いに答えよ。
三角関数$\cos x$, $\sin x$については加法定理が成立するが、逆に加法定理を満たす関数はどのようなものがあるだろうか。実数全体を定義域とする実数値関数$f(x)$, $g(x)$が以下の条件を満たすとする。
(A)すべてのx, yについて$f(x+y)$=$f(x)$$f(y)$-$g(x)$$g(y)$
(B)すべてのx, yについて$g(x+y)$=$f(x)$$g(y)$+$g(x)$$f(y)$
(C)$f(0)$$\ne$0
(D)$f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=0, $g'(0)$=1
条件(A), (B), (C)から$f(0)$=1, $g(0)$=0 がわかる。以上のことから$f(x)$, $g(x)$はすべてのxの値で微分可能で、$f'(x)$=$-g(x)$, $g'(x)$=$f(x)$が成立することが示される。上のことから$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 であることが、実部と虚部を調べることによりわかる。ただし$i$は虚数単位である。よって条件(A), (B), (C), (D)を満たす関数は三角関数$f(x)$=$\cos x$, $g(x)$=$\sin x$であることが示される。
さらに、a, bを実数でb≠0とする。このとき条件(D)をより一般的な(D)', $f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=a, $g'(0)$=b
におきかえて、条件(A), (B), (C), (D)'を満たす$f(x)$, $g(x)$はどのような関数になるか考えてみる。この場合でも、条件(A), (B), (C)から$f(0)$=1, $g(0)$=0が上と同様にわかる。ここで
$p(x)$=$e^{-\frac{a}{b}x}f(\frac{x}{b})$, $q(x)$=$e^{-\frac{a}{b}x}g(\frac{x}{b})$
とおくと、条件(A), (B), (C), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされる。すると前半の議論により、$p(x)$, $q(x)$がまず求まり、このことを用いると$f(x)$=$\boxed{\ \ ア\ \ }$, $g(x)$=$\boxed{\ \ イ\ \ }$が得られる。
(1)下線部①について、$f(0)$=1, $g(0)$=0であることを示せ。
(2)下線部②について、$f(x)$がすべてのxの値で微分可能な関数であり、
$f'(x)$=$-g(x)$となることを示せ。
(3)下線部③について、下線部①、下線部②の事実を用いることにより、
$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 となることを示せ。
(4)下線部④について、条件(B), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされることを示せ。つまり$p(x)$を$q(x)$が、
(B)すべてのx, yについて、$q(x+y)$=$p(x)$$q(y)$+$q(x)$$p(y)$
(D)$p(x)$, $q(x)$はx=0 で微分可能で$p'(0)$=0, $q'(0)$=1
を満たすことを示せ。また空欄$\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$に入る関数を求めよ。

2023九州大学理系過去問
この動画を見る 

福田の数学〜大阪大学2023年理系第1問〜不等式の証明と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#微分とその応用#数列の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ nを2以上の自然数とする。
(1)0≦x≦1のとき、次の不等式が成り立つことを示せ。
$\frac{1}{2}x^2$≦$\displaystyle(-1)^n\left\{\frac{1}{x+1}-1-\sum\_{k=2}^n(-x)^{k-1}\right\}$≦$x^n-\frac{1}{2}x^{n+1}$
(2)$a_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$ とするとき、次の極限値を求めよ。
$\displaystyle\lim_{n \to \infty}(-1)^nn(a_n-\log 2)$

2023大阪大学理系過去問
この動画を見る 

福田の数学〜青山学院大学2022年理工学部第3問〜関数の増減と極値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
関数
$f(x)=\sqrt{1-2\cos x}-\frac{1}{2}x$
について以下の問いに答えよ。
(1)$f'(x)$を求めよ。
(2)$f'(x) \gt 0$ となるxの値の範囲を求めよ。
(3)\ f(x)の増減を調べ、極値を求めよ。

2022青山学院大学理工学部過去問
この動画を見る 
PAGE TOP