【数学】中高一貫校問題集2幾何110:円:内接四角形:相似の証明 - 質問解決D.B.(データベース)

【数学】中高一貫校問題集2幾何110:円:内接四角形:相似の証明

問題文全文(内容文):
図のように、円に内接する四角形ABCDがある。辺BAとCDをそれぞれ延長した直線の交点をEとし、3点A、C、Eを通る円と辺ADを延長した直線の交点をFとする。このとき、△BCE∽△DCFであることを証明しなさい。
チャプター:

0:00 オープニング
0:05 問題文
0:25 解説
1:39 証明
2:59 エンディング

単元: #数学(中学生)#中3数学#円
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のように、円に内接する四角形ABCDがある。辺BAとCDをそれぞれ延長した直線の交点をEとし、3点A、C、Eを通る円と辺ADを延長した直線の交点をFとする。このとき、△BCE∽△DCFであることを証明しなさい。
投稿日:2023.10.06

<関連動画>

【裏技】三平方の定理

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三平方の定理の解き方、裏技紹介動画です
この動画を見る 

これでも高校入試 因数分解 久留米大附設

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^2+(a+7)x -6(a-2)(a+1)$

久留米大学附設高等学校
この動画を見る 

福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#相似な図形#数列#漸化式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数からなる数列${z_n}$を、次の条件で定める。
$z_1=0,\ \ \ z_{n+1}=(1+i)z_n-i \ \ \ (i=1,2,3, \ \ ...)$
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。
(1)$z_2=\boxed{ツ }+\boxed{ツ }\ i, \ \ \ z_3=\boxed{ト}+$
$\boxed{ナ}\ i,\ \ \ z_4=\boxed{二}+\boxed{ヌ}\ i $である。
(2)$r \gt 0,\ 0 \leqq θ \lt 2\pi$ を用いて、$1+i=r(\cos θ+i\sin θ)$のように$1+i$を極形式で
表すとき、$r=\sqrt{\boxed{ネ}},\ θ=\frac{\boxed{ノ }}{\boxed{ハ}}\pi$である。
(3)すべての正の整数nに対する$\triangle PA_nA_{n+1}$が互いに相似になる点Pに対応する
複素数は、$\boxed{ヒ}+\boxed{フ }\ i$である。
(4)$|z_n| \gt 1000$となる最小のnは$n=\boxed{へ}$である。
(5)$A_{2022+k}$が実軸上にある最小の正の整数kは$k=\boxed{ホ}$である。

2022上智大学理工学部過去問
この動画を見る 

【…で、実際の解き方は?】二次方程式:法政大学第二高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2次方程式$(2x+3)^2=(3x-8)^2$を解きなさい.

法政大第二高校過去問
この動画を見る 

【中学数学】2次方程式の解き方まとめ 3-6【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$x^2-8x+9=0$ の3つの解き方を紹介します。
この動画を見る 
PAGE TOP