福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編) - 質問解決D.B.(データベース)

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、$a,b,c,d$は全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、$n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$a_1,a_2,\cdot,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} $$\geqq \sqrt[n]{a_1a_2\cdots a_n}$
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、$a,b,c,d$は全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、$n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$a_1,a_2,\cdot,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} $$\geqq \sqrt[n]{a_1a_2\cdots a_n}$
投稿日:2018.07.09

<関連動画>

30秒で「図示して数学を解く」考えを身に付ける動画~全国入試問題解法 #Shorts #高校入試

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$-2.7$より大きく$\dfrac{14}{3}$より小さい整数は全部で何個あるか.
この動画を見る 

ただの指数方程式なんだけど

アイキャッチ画像
単元: #方程式#数Ⅱ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ xy \neq o.x,y$は有理数である.$
72^x48^y=6^{xy}$
これを解け.

数学jrオリンピック過去問
この動画を見る 

【受験対策】数学-資料の活用①

アイキャッチ画像
単元: #数学(中学生)#中1数学#資料の活用
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①資料Aは、ある中学校の3年生男子11名が行った反復横跳びの回数を記録したものである。
中央値を求めよう。

②表Bは、あるサッカーチームが行った試合の得点の記録をまとめたものである。この表から試合の得点の最頻値と平均値を求めよう。

③表Cは、あるクラスの生徒33人に対して50m走を実施し、その記録を度数分布表 にまとめたものである。度数が最も多い階級の階級値を求めよう。

※資料/表は動画内参照
この動画を見る 

【中学数学】中高一貫校用問題集(代数編)正の数と負の数:四則の混じった計算:魔方陣

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の表において、縦・横・斜めの数の和が全て等しくなるようにしたい。ア~キにあてはまる数を、それぞれ求めよう。
この動画を見る 

【中1 数学】  1-①⑤ 代入とは?  【6~7月】

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中1 数学 代入とは?
以下の問に答えよ
$x=-2$ のとき
① $5-x$ の値は?
② $3x+4$ の値は?
③ $\dfrac{14}{x}$ は?
④ $-x^2$ は?

$x=3$ 、$ y=-4$ のとき
⑤ $-x+\dfrac{1}{2}y$
この動画を見る 
PAGE TOP