完全順列(モンモールの問題)【高校数学】 - 質問解決D.B.(データベース)

完全順列(モンモールの問題)【高校数学】

問題文全文(内容文):
完全順列(モンモールの問題)の説明動画です
単元: #数A#場合の数と確率#場合の数#確率
指導講師: 受験メモ山本
問題文全文(内容文):
完全順列(モンモールの問題)の説明動画です
投稿日:2019.10.29

<関連動画>

横浜国立大 場合の数・数列の和 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜国立大学過去問題
1~nの整数から異なる2つの整数をとり出し、その2つの整数の和をS、積をtとする。
(1)とり出し方全てを考えたときのSの総和
(2)とり出し方全てを考えたときのtの総和
この動画を見る 

福田の数学〜魔方陣の基礎知識があると楽に解けるね〜慶應義塾大学2023年環境情報学部第3問(2)〜魔方陣と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
( 2 )まず、図 2 の 9 つのマスに、縦、横、斜めにならんだ 3 つの数の和がいずれも等しくなるように、相異なる 1 ~ 9 の正の整数を 1 つずっ割り当てる。複数の割り当て方が考えられるが、その 1 つを選び割り当てるものとする。この 9 つの数を、図 3 に示すように 3 つのサイコロの展開図に書き写し、図 4のように 3 つのサイコロを作成する。サイコロは振ると、等しい確率で目(書き写した数)が出るものとする。いま、 2 人のプレ ー ヤ ー が 3 つのサイコロから異なるものを 1 つずつ選び、そのサイコロを振り、出た目が大きい方が勝っとする。あなたの対戦相手が9 を含むサイコロを選んだとき、あなたがこのゲ ー ムに、より高確率に勝っために選ぶべきサイコロは、$\fbox{エ}$を含むサイコロである。

2023慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第3問〜データの分析と条件付き確率

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#場合の数と確率#データの分析#データの分析#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$xの関数が印刷されているカード25枚が1つの袋に入っている。
その内訳は、11枚に$1-3x$、9枚に$1-2x$、4枚に$1-2x+2x^2$、1枚に$1-3x+5x^2$である。
この袋からカードを1枚取り出し、印刷されている関数を記録してから袋に戻すことを
100回繰り返したところ、記録の内訳は$1-3x$が46回、$1-2x$が35回、$1-2x+2x^2$が15回、
$1-3x+5x^2$が4回であった。
(1)記録された関数の実数xにおける値を$a_1,a_2,\ldots,a_{100}$とおく。
$a_1,a_2,\ldots,a_{100}$の平均値は、xの値を定めるとそれに対応して値が定まるので、
xの関数である。この関数は$x=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$のとき最小となり、その値は$-\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オ\ \ }}$である。
(2)記録された関数の$x=0$から$x=1$までの定積分を$b_1,b_2,\ldots,b_{100}$とおく。
$b_1,b_2,\ldots,b_{100}$の平均値は$-\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}$であり、
分散は$\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。
また、記録された関数の$x=1$における値を$c_1,c_2,\ldots,c_{100}$とおくとき、
100個のデータの組$(b_1,c_1),(b_2,c_2),\ldots,(b_{100},c_{100})$の共分散は$\frac{\boxed{\ \ スセ\ \ }}{\boxed{\ \ ソタ\ \ }}$である。
(3)カードがすべて袋に入った状態から1枚取り出したとき、印刷されている
関数の$x=1$における値が負である条件の下で、その関数の0から1までの定積分
が負である条件つき確率は$\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}$である。

2022慶應義塾大学経済学部過去問
この動画を見る 

京都大 確率 確率でも検算できるぞ

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1~n$まで番号の書かれた札が各2枚ずつある。$(n \geqq 3)$
[1][1][2][2]…[n][n]

2$n$枚から3枚選んで順に$x_1,x_2,x_3$とする。
$x_1 \lt x_2 \lt x_3$となる確率は?

出典:2012年京都大学 過去問
この動画を見る 

【数A】確率:(理系)東京大学1971年 ジャンケンの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3人でジャンケンをして勝者をきめることにする。たとえば,1人が"紙"を出し, 他の2人が”石"を出せば,ただ1回でちょうど1人の勝者がきまることになる。 
3 人でジャンケンをして,負けた人は次の回に参加しないことにして,ちょうど1 人の勝者がきまるまで,ジャンケンをくり返すことにする。 
このとき,n回目 に,はじめてちょうど1人の勝者がきまる確率を求めよう。
この動画を見る 
PAGE TOP