【数A】【場合の数と確率】条件付き確率1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数A】【場合の数と確率】条件付き確率1 ※問題文は概要欄

問題文全文(内容文):
ジョーカーを除く1組52枚のトランプから2枚のカードを同時に抜き出す。2枚のうちの少なくとも1枚はハートであることがわかっているとき、残りの1枚もハートである確率を求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:18 解説
3:47 エンディング

単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ジョーカーを除く1組52枚のトランプから2枚のカードを同時に抜き出す。2枚のうちの少なくとも1枚はハートであることがわかっているとき、残りの1枚もハートである確率を求めよ。
投稿日:2025.03.06

<関連動画>

福田の数学〜慶應義塾大学2022年環境情報学部第1問〜4つの音で作るチャイムの種類

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$ある学校では、ドミソシの4つの音を4つ組み合わせてチャイムを作り、
授業の開始・終了などを知らせるために鳴らしている。
チャイムは、図1(※動画参照)のように4×4の格子状に並んだ16個のボタン
を押すことによって作ることができる。縦方向は音の種類を表し、横方向は時間
を表している。例えば、ドミソシという音を1つずつ、
順番に鳴らすチャイムを作るには、図2(※動画参照)のようにボタンを押せばよい。
ただし、鳴らすことのできる音の数は縦1列あたり1つだけであり、
音を鳴らさない無音は許されず、それぞれの例で必ず1つの音を選ばなければならないとする。
(1)4つの音を1回ずつ鳴らすことを考えた場合、チャイムの種類は$\boxed{\ \ アイウ\ \ }$通り。
(2)(1)に加えて、同じ音を連続して2回繰り返すことを1度だけしてもかまわない(例:ドミミソ)
とした場合、
チャイムの種類は合わせて$\boxed{\ \ エオカ\ \ }$通りになる。
ただし、連続する音以外は高々1回までしか鳴らすことはできず、
それらは連続する音とは異ならなければならないものとする。
(3)(1)と(2)に加えて、同じ音を連続して4回繰り返すチャイムを許すと、
可能なチャイムの種類は合わせて$\boxed{\ \ キクケ\ \ }$通りになる。

2022慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜立教大学2024年理学部第2問〜反復試行の確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$1$ から $6$ の番号がひとつずつ重複なくつけられた $6$ つの箱がある。このとき、次の試行を行う。
$\fbox{さいころを $1$ つ投げて、出た目の番号のついた箱に玉を $1$ つ入れる。}$
この試行を繰り返し、いずれかの箱に玉が $3$ 個入った時点で終了する。ただし、$1$ 回目の試行を行う前は、どの箱にも玉は $1$ 個も入っていないとする。終了するまでに行った試行の回数を $N$ とする。
$(1)$ $N$ のとりうる最小値 $N_0$ と最大値 $N_1$ をそれぞれ求めよ。
$(2)$ $N=N_{0}$ となる確率を求めよ。
$(3)$ $N=N_{0}+1$ となる確率を求めよ。
$(4)$ 試行を $6$ 回行った時点で、すべての箱に $1$ つずつ玉が入るという事象を $A$ とする。また、$N=N_{1}$ となる事象を $B$ とする。事象 $A$ が起こったときの事象 $B$ が起こる条件付き確率 $P_{A}(B)$ を求めよ。
$(5)$ $N=N_{1}$ となる確率を $P$ とするとき、$6^{8}P$ は整数となる。その値を求めよ。
この動画を見る 

東大 場合の数 高校数学 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#場合の数#場合の数#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える。ただし、1個のボ ールも入らない箱があってもよいものとする。以下に述べる4つの場合について、それぞれ 相異なる入れ方の総数を求めたい。

(1) 1からnまで異なる番号のついたこのボールを、A、B、Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(2)互いに区別のつかないn個のボールを、A、B、Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(3) 1からnまで異なる番号のついたn個のボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(4)nが6の倍数6mであるとき、n個の互いに区別のつかないボールを、区別のつかない3つ の箱に入れる場合、その入れ方は全部で何通りあるか。
この動画を見る 

福田の数学〜千葉大学2024年理系第4問(3)〜コンビネーションに関する不等式の評価

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正の整数$n,p,q$が$p > q$かつ$_p\mathrm{C}_2+_q\mathrm{C}_2=n$を満たすとする。$_m\mathrm{C}_2 \leqq n$となる最大の整数$m$を求めよ。
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第1問〜整数解と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 袋の中に1から5までの番号をつけた5個の玉が入っている。この袋から玉を1個取り出し、番号を調べてから元に戻す試行を、4回続けて行う。n回目(1≦n≦4)に取り出された玉の番号を$r_n$とするとき、
・$r_1$+$r_2$+$r_3$+$r_4$≦8 となる確率は$\boxed{\ \ (ア)\ \ }$
・$\displaystyle\frac{4}{r_1r_2}$+$\displaystyle\frac{2}{r_3r_4}$=1となる確率は$\boxed{\ \ (イ)\ \ }$
である。

2023東京慈恵会医科大学医学部過去問
この動画を見る 
PAGE TOP