横浜国立大 場合の数・数列の和 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

横浜国立大 場合の数・数列の和 Mathematics Japanese university entrance exam

問題文全文(内容文):
横浜国立大学過去問題
1~nの整数から異なる2つの整数をとり出し、その2つの整数の和をS、積をtとする。
(1)とり出し方全てを考えたときのSの総和
(2)とり出し方全てを考えたときのtの総和
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜国立大学過去問題
1~nの整数から異なる2つの整数をとり出し、その2つの整数の和をS、積をtとする。
(1)とり出し方全てを考えたときのSの総和
(2)とり出し方全てを考えたときのtの総和
投稿日:2018.10.14

<関連動画>

2023一橋大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
A,B,Cの3人が順番にサイコロを振り,最初に1を出した人が勝ち,
だれかが1を出すか、全員がn回ずつ振ったら終了
A,B,Cそれぞれが勝つ確率$P_A,P_B,P_C$を求めよ.

2023一橋大過去問
この動画を見る 

マークシート適当で満点の確率は?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
四択問題適当にマークして満点とれる確率
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第1問〜さいころの目の最大最小の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$1個のさいころを4回投げるとき、出た目の最小値をm、最大値をMとする。
(1)$m \geqq 2$となる確率は$\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカキ\ \ }}$であり、
$m=1$となる確率は$\frac{\boxed{\ \ クケコ\ \ }}{\boxed{\ \ サシスセ\ \ }}$である。
(2)$m \geqq 2$かつ$M \leqq 5$となる確率は$\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}$であり、$m \geqq 2$かつ$M=6$となる確率は
$\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニヌ\ \ }}$である。

(3)$m=1$かつ$M=6$となる確率は$\frac{\boxed{\ \ ネノハ\ \ }}{\boxed{\ \ ヒフヘ\ \ }}$である。

2021青山学院大学理工学部過去問
この動画を見る 

【数学】確率をイメージ・原理から詳しく!!並び替えの有無の判断基準は?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】確率をイメージ・原理から詳しく解説する動画です
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第2問〜色々な条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ $1個$のさいころを繰り返し投げ、出た目の数により以下の$(\textrm{a}),$$(\textrm{b})$に従い得点を定める。
$(\textrm{a})$最初から$10回$連続して$1の目$が出た場合には、$10回目$で投げ終えて、得点を$0点$とする。
$(\textrm{b})m$を$0 \leqq m \leqq 9$を満たす整数とする。最初から$m回$連続して$1の目$が出てかつ$m+1回目$に初めて$1以外$の目$n$が出た場合には、続けてさらに$n回$投げたところで投げ終えて、$1回目$から$m+n+1回目$までに出た目の合計を得点とする。ただし、最初から$1以外$の目が出た場合には$m=0$とする。
$(1)$得点が$49点$であるとする。このとき、$n=\boxed{\ \ ア\ \ }$となり、$m$の取り得る値の範囲は$\boxed{\ \ イ\ \ } \leqq m \leqq \boxed{\ \ ウ\ \ }$であり、得点が$49点$となる確率は$\displaystyle\frac{\boxed{\ \ エオ\ \ }}{6^{16}}$である。また、得点が
$49点$で、さいころを投げる回数が$15回$以上である確率は$\displaystyle\frac{\boxed{\ \ カキ\ \ }}{6^{16}}$となる。さらに得点が$49点$である条件のもとで、さいころを投げる回数が$14回$以下である条件付き確率は$\displaystyle\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コサ\ \ }}$となる。
$(2)$さいころを投げる回数が$15回$以上である確率は$\displaystyle\frac{\boxed{\ \ シ\ \ }}{6^{10}}$となる。ゆえに、さいころを投げる回数が$14回$以下である条件のもとで、得点が$49点$となる条件付き確率は、$k=\boxed{\ \ ス\ \ }$とおいて$\displaystyle\frac{1}{6^k(6^{10}-\boxed{\ \ セ\ \ })}$となる。
$(3)$得点が正の数で、かつ、さいころを投げる回数が$14回$以下である条件のもとで、得点が$49点$となる条件付き確率は$l=\boxed{\ \ ソ\ \ }$とおいて$\displaystyle \frac{1}{6^l(6^{10}-\boxed{\ \ タ\ \ })}$となる。

2021慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP