福田の数学〜空間の位置ベクトルの考え方〜明治大学2023年理工学部第1問(4)〜平面と直線の交点の位置ベクトル - 質問解決D.B.(データベース)

福田の数学〜空間の位置ベクトルの考え方〜明治大学2023年理工学部第1問(4)〜平面と直線の交点の位置ベクトル

問題文全文(内容文):
$\Large{\boxed{1}}$ (4)四面体OABCにおいて、辺OAを1:3に内分する点をD、辺ABを1:2に内分する点をE、辺OCを1:2に内分する点をFとすると、
$\overrightarrow{DE}$=$\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハヒ\ \ }}\overrightarrow{OA}$+$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}\overrightarrow{OB}$, $\overrightarrow{DF}$=$-\frac{\boxed{\ \ ホ\ \ }}{\boxed{\ \ マ\ \ }}\overrightarrow{OA}$+$\frac{\boxed{\ \ ミ\ \ }}{\boxed{\ \ ム\ \ }}\overrightarrow{OC}$
である。さらに、3点D,E,Fを通る平面と辺BCの交点をGとすると、
$\overrightarrow{DF}$=$\frac{\boxed{\ \ メ\ \ }}{\boxed{\ \ モ\ \ }}\overrightarrow{DE}$+$\frac{\boxed{\ \ ヤ\ \ }}{\boxed{\ \ ユ\ \ }}\overrightarrow{DF}$
である。したがって、$\overrightarrow{BG}$=$\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ラ\ \ }}\overrightarrow{BC}$ となる。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (4)四面体OABCにおいて、辺OAを1:3に内分する点をD、辺ABを1:2に内分する点をE、辺OCを1:2に内分する点をFとすると、
$\overrightarrow{DE}$=$\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハヒ\ \ }}\overrightarrow{OA}$+$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}\overrightarrow{OB}$, $\overrightarrow{DF}$=$-\frac{\boxed{\ \ ホ\ \ }}{\boxed{\ \ マ\ \ }}\overrightarrow{OA}$+$\frac{\boxed{\ \ ミ\ \ }}{\boxed{\ \ ム\ \ }}\overrightarrow{OC}$
である。さらに、3点D,E,Fを通る平面と辺BCの交点をGとすると、
$\overrightarrow{DF}$=$\frac{\boxed{\ \ メ\ \ }}{\boxed{\ \ モ\ \ }}\overrightarrow{DE}$+$\frac{\boxed{\ \ ヤ\ \ }}{\boxed{\ \ ユ\ \ }}\overrightarrow{DF}$
である。したがって、$\overrightarrow{BG}$=$\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ラ\ \ }}\overrightarrow{BC}$ となる。
投稿日:2023.11.14

<関連動画>

【平面の方程式の求め方はこれ!】平面の方程式の求め方を2つ解説しました〔数学、高校数学〕

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
平面の方程式の求め方について解説します。
この動画を見る 

【数学B】平面の方程式(発展)【空間ベクトル】

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学B】平面の方程式(発展)の解説動画です
-----------------
$A(1,2,2)$を通り、$\vec { n }(3,-2,4)$に垂直な平面の方程式は?
この動画を見る 

福田の数学〜東京医科歯科大学2024医学部第2問〜ベクトルの勾配と無理不等式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{2} xyz$ 空間において、点$\mathrm{ A }( 1, 0, 0 )$, $\mathrm{ B }(0, 1, 0)$, $\mathrm{ C }(-1, 0, 0)$, $\mathrm{ D }(0, 0, 1)$ をとり、線分 $\mathrm{ CD }$の中点を$\mathrm{ M }$とする。さらに、$\mathrm{ N }$を線分$\mathrm{ BD }$上の点とする。また、$z$軸と平行でない直線上の異なる2点$\mathrm{ P }(x, y, z), \mathrm{ Q }(x', y', z')$ に対して
$\frac{z' - z}{\sqrt{(x' - x) ^ 2 + (y' - y) ^ 2}}$をベクトル$\overrightarrow{ \mathrm{ PQ } }$の勾配と呼ぶ。$\overrightarrow{ \mathrm{ AN } }$の勾配を$t_1$、$\overrightarrow{ \mathrm{ NM } }$の勾配を$t_2$とするとき、
以下の各問いに答えよ。
(1) $t_2 = 0$ となるように$\mathrm{ N }$をとったとき、$t_1$の値を求めよ。
(2) $l = |\overrightarrow{ \mathrm{ AN } }|+|\overrightarrow{ \mathrm{ NM } }|$とし、$l$が最小となるように$\mathrm{ N }$をとったとき、$l$の値を求めよ。
(3) $0 \leqq t_{2} \leqq t_{1}$ となるように$\mathrm{ N }$をとったとき、$\mathrm{ N }$の$y$座標を$s$とする。$s$がとりうる値の範囲を求めよ。
この動画を見る 

【数B】空間ベクトル: 四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。
この動画を見る 

福田のおもしろ数学188〜入射光線の方向ベクトルと平面の法線ベクトルから反射光線の方向ベクトルを知る方法

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
法線ベクトルが $\vec{p}=(-1, \, 2, \, 1)$ である平面 $\alpha$ に、光線が方向ベクトル $\vec{q}=(2, \, -1, \, 2)$ で入射した。このとき反射光線の方向ベクトルを単位ベクトルで求めよ。
この動画を見る 
PAGE TOP