【高校数学】数Ⅰ-13 √(ルート)シリーズ①(有理化編) - 質問解決D.B.(データベース)

【高校数学】数Ⅰ-13 √(ルート)シリーズ①(有理化編)

問題文全文(内容文):
◎計算しよう。
①$\displaystyle \frac{2\sqrt{ 5 }-5\sqrt{ 2 }}{\sqrt{ 5 }-\sqrt{ 2 }}$

②$\displaystyle \frac{1}{1-\sqrt{ 2 }}-\displaystyle \frac{1}{\sqrt{ 2 }-\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }-2}$

③$\displaystyle \frac{1}{1+\sqrt{ 5 }+\sqrt{ 6 }}$
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。
①$\displaystyle \frac{2\sqrt{ 5 }-5\sqrt{ 2 }}{\sqrt{ 5 }-\sqrt{ 2 }}$

②$\displaystyle \frac{1}{1-\sqrt{ 2 }}-\displaystyle \frac{1}{\sqrt{ 2 }-\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }-2}$

③$\displaystyle \frac{1}{1+\sqrt{ 5 }+\sqrt{ 6 }}$
投稿日:2014.03.28

<関連動画>

【数A】【数と式】(1)(x²+xy+y²)(x²-xy+y²)(x⁴+x²y²+y⁴)(2) (x+y+1)(x+y-1)(x-y+1)(x-y-1)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を展開しなさい
(1). (x²+xy+y²)(x²-xy+y²)(x⁴+x²y²+y⁴)
(2). (x+y+1)(x+y-1)(x-y+1)(x-y-1)
この動画を見る 

慶應義塾大 3次方程式が有理数解をもつ条件

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3x^3-(a+1)x^2-4x+a=0$が整数でない有理数解をもつ自然数$a$の値を求めよ.

慶應義塾大過去問
この動画を見る 

因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x(y^3-z^3)+y(z^3-x^3)+z(x^3-y^3)$
これを因数分解せよ.

創価大過去問
この動画を見る 

【高校数学】  数Ⅰ-80  三角比⑤

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0° \leqq \theta \leqq 90°$のとき
$\sin (90°+\theta)=$①____
$\cos(90°+\theta)=$②____
$\tan(90°+\theta)=$③____


$0° \leqq \theta \leqq 180°$とき
$\sin (180°-\theta)=$④____
$\cos(180°-\theta)=$⑤____
$\tan(180°-\theta)=$⑥____
⑦$\sin105°-\cos150°+\sin120°+\cos165°$の値は?
この動画を見る 

循環小数を分数に直す 近江高校

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$1.\dot{2} \dot{3}$を分数で表せ。

近江高等学校
この動画を見る 
PAGE TOP