福田の数学〜上智大学2022年TEAP理系型第2問〜空間ベクトルと軌跡 - 質問解決D.B.(データベース)

福田の数学〜上智大学2022年TEAP理系型第2問〜空間ベクトルと軌跡

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 一辺の長さが1である立方体QACB-CFGEを考える。\hspace{130pt}\\
\overrightarrow{ OA } = \overrightarrow{ a },\ \overrightarrow{ OB } = \overrightarrow{ b },\ \overrightarrow{ OC } = \overrightarrow{ c },\ とおき、実数s,tに対し\\
点P,Qを\\
\overrightarrow{ OP } =(1-s)\overrightarrow{ a } +s\ \overrightarrow{ b }+s\ \overrightarrow{ c },\ \ \overrightarrow{ OQ } =\overrightarrow{ a } +t\ \overrightarrow{ b }+(1-t)\ \overrightarrow{ c }\\
を満たす点とする。\\
(1)点Pは直線\boxed{\ \ あ\ \ }上にあり、点Qは直線\boxed{\ \ い\ \ }上にある。\\
(2)直線\boxed{\ \ あ\ \ }と直線\boxed{\ \ い\ \ }とは\boxed{\ \ う\ \ }\\
\\
\boxed{\ \ う\ \ }の選択肢\\
(\textrm{a})一致する \ \ \ (\textrm{b})平行である \ \ \ (\textrm{c})直交する \ \ \ (\textrm{d})交わるが直交しない \ \ \ \\
(\textrm{e})ねじれの位置にあって垂直である \ \ \ (\textrm{f})ねじれの位置にあって垂直でない \ \ \ \\
\\
(3)線分PQの長さは、s=\boxed{\ \ え\ \ },\ t=\boxed{\ \ お\ \ }\ のとき最小値をとり、\\
このときPQ^2=\boxed{\ \ か\ \ }\ である\\
\\
\boxed{\ \ え\ \ }\ \boxed{\ \ お\ \ }\ \boxed{\ \ か\ \ }\ の選択肢\\
(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{6}\ \ \ (\textrm{c})\frac{1}{4}\ \ \ (\textrm{d})\frac{1}{3}\ \ \ (\textrm{e})\frac{1}{2}\ \ \ (\textrm{f})\frac{2}{3}\ \ \ (\textrm{g})\frac{3}{4}\ \ \ (\textrm{h})1\ \ \ (\textrm{i})\frac{4}{3}\ \ \ (\textrm{j})\frac{3}{2}\ \ \ (\textrm{k})2\ \ \ (\textrm{l})3\ \ \ \\
\\
(4)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQの中点Mの動く領域は\\
\boxed{\ \ き\ \ }\ であり、その面積は\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}\ である。\\
\\
\boxed{\ \ き\ \ }の選択肢\\
(\textrm{a})正三角形\ \ \ (\textrm{b})直角二等辺三角形\ \ \ (\textrm{c})直角二等辺三角形でない直角三角形\ \ \ \\
(\textrm{d})直角二等辺三角形でない直角三角形でもない三角形\ \ \ (\textrm{e})正方形\ \ \ (\textrm{f})正方形でない長方形\ \ \ \\
(\textrm{g})長方形でない平行四辺形\ \ \ (\textrm{h})並行四辺形でない四角形\ \ \ (\textrm{i})五角形\ \ \ (\textrm{i})六角形\ \ \ \\
\\
(5)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQが通過する領域の体積は\\
\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\ である。
\end{eqnarray}
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 一辺の長さが1である立方体QACB-CFGEを考える。\hspace{130pt}\\
\overrightarrow{ OA } = \overrightarrow{ a },\ \overrightarrow{ OB } = \overrightarrow{ b },\ \overrightarrow{ OC } = \overrightarrow{ c },\ とおき、実数s,tに対し\\
点P,Qを\\
\overrightarrow{ OP } =(1-s)\overrightarrow{ a } +s\ \overrightarrow{ b }+s\ \overrightarrow{ c },\ \ \overrightarrow{ OQ } =\overrightarrow{ a } +t\ \overrightarrow{ b }+(1-t)\ \overrightarrow{ c }\\
を満たす点とする。\\
(1)点Pは直線\boxed{\ \ あ\ \ }上にあり、点Qは直線\boxed{\ \ い\ \ }上にある。\\
(2)直線\boxed{\ \ あ\ \ }と直線\boxed{\ \ い\ \ }とは\boxed{\ \ う\ \ }\\
\\
\boxed{\ \ う\ \ }の選択肢\\
(\textrm{a})一致する \ \ \ (\textrm{b})平行である \ \ \ (\textrm{c})直交する \ \ \ (\textrm{d})交わるが直交しない \ \ \ \\
(\textrm{e})ねじれの位置にあって垂直である \ \ \ (\textrm{f})ねじれの位置にあって垂直でない \ \ \ \\
\\
(3)線分PQの長さは、s=\boxed{\ \ え\ \ },\ t=\boxed{\ \ お\ \ }\ のとき最小値をとり、\\
このときPQ^2=\boxed{\ \ か\ \ }\ である\\
\\
\boxed{\ \ え\ \ }\ \boxed{\ \ お\ \ }\ \boxed{\ \ か\ \ }\ の選択肢\\
(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{6}\ \ \ (\textrm{c})\frac{1}{4}\ \ \ (\textrm{d})\frac{1}{3}\ \ \ (\textrm{e})\frac{1}{2}\ \ \ (\textrm{f})\frac{2}{3}\ \ \ (\textrm{g})\frac{3}{4}\ \ \ (\textrm{h})1\ \ \ (\textrm{i})\frac{4}{3}\ \ \ (\textrm{j})\frac{3}{2}\ \ \ (\textrm{k})2\ \ \ (\textrm{l})3\ \ \ \\
\\
(4)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQの中点Mの動く領域は\\
\boxed{\ \ き\ \ }\ であり、その面積は\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}\ である。\\
\\
\boxed{\ \ き\ \ }の選択肢\\
(\textrm{a})正三角形\ \ \ (\textrm{b})直角二等辺三角形\ \ \ (\textrm{c})直角二等辺三角形でない直角三角形\ \ \ \\
(\textrm{d})直角二等辺三角形でない直角三角形でもない三角形\ \ \ (\textrm{e})正方形\ \ \ (\textrm{f})正方形でない長方形\ \ \ \\
(\textrm{g})長方形でない平行四辺形\ \ \ (\textrm{h})並行四辺形でない四角形\ \ \ (\textrm{i})五角形\ \ \ (\textrm{i})六角形\ \ \ \\
\\
(5)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQが通過する領域の体積は\\
\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\ である。
\end{eqnarray}
投稿日:2022.10.12

<関連動画>

【数B】空間ベクトル:東京理科大 座標空間の図形問題

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCは,OA=4,OB=5,OC=3,∠AOB=90°,∠AOC=∠BOC=60°を満たしている。
(1)点Cから△OABに下した垂線と△OABとの交点をHとする。ベクトルCHをOA,OB,OCを用いて表そう。
(2)四面体OABCの体積を求めよう。
この動画を見る 

福田の一夜漬け数学〜折れ線の最小(2)〜受験編

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 点A(1,2,4)を通り、ベクトル\ \overrightarrow{ n }=(-3,1,2)に垂直な平面を\alphaとする。\\
平面\alphaに関して同じ側に2点\ P(-2,1,7),Q(1,3,7)がある。\\
平面\alpha上の点で、PS+QSを最小にする点Sの座標と最小値を求めよ。
\end{eqnarray}
この動画を見る 

これ知ってる?

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
全方向美少女が全方向でない事に関して解説します。
この動画を見る 

福田の数学〜空間における三角形の外心はどうやって求める〜杏林大学2023年医学部第2問前編〜空間ベクトルと三角形の外心

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(1)〜空間図形の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} (1)右図(※動画参照)のような正六面体ABCD-EFGHにおいて、辺FGの中点をMとする。\\
このとき、三角形CHMの重心をXとすると、\\
\\
\overrightarrow{ AX }=\boxed{\ \ ア\ \ }\ \overrightarrow{ AB }+\boxed{\ \ イ\ \ }\ \overrightarrow{ AD }+\boxed{\ \ ウ\ \ }\ \overrightarrow{ AE }\\
\\
と表せ、直線AGと三角形CHMの交点をYとすると\\
\\
\overrightarrow{ AY }=\boxed{\ \ エ\ \ }\ \overrightarrow{ AB }+\boxed{\ \ オ\ \ }\ \overrightarrow{ AD }+\boxed{\ \ カ\ \ }\ \overrightarrow{ AE }\\
\\
と表せる。\\
\\
\\
解答群:⓪\ 1 \ \ \ \ ①\ \frac{1}{2} \ \ \ \ ②\ \frac{1}{3} \ \ \ \ ③\ \frac{2}{3} \ \ \ \ ④\ \frac{1}{4} \ \ \ \ \\
⑤\ \frac{3}{4} \ \ \ \ ⑥\ \frac{1}{5} \ \ \ \ ⑦\ \frac{4}{5} \ \ \ \ ⑧\ \frac{1}{6} \ \ \ \ ⑨\ \frac{5}{6}\\

\end{eqnarray}
この動画を見る 
PAGE TOP