問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 一辺の長さが1である立方体QACB-CFGEを考える。\hspace{130pt}\\
\overrightarrow{ OA } = \overrightarrow{ a },\ \overrightarrow{ OB } = \overrightarrow{ b },\ \overrightarrow{ OC } = \overrightarrow{ c },\ とおき、実数s,tに対し\\
点P,Qを\\
\overrightarrow{ OP } =(1-s)\overrightarrow{ a } +s\ \overrightarrow{ b }+s\ \overrightarrow{ c },\ \ \overrightarrow{ OQ } =\overrightarrow{ a } +t\ \overrightarrow{ b }+(1-t)\ \overrightarrow{ c }\\
を満たす点とする。\\
(1)点Pは直線\boxed{\ \ あ\ \ }上にあり、点Qは直線\boxed{\ \ い\ \ }上にある。\\
(2)直線\boxed{\ \ あ\ \ }と直線\boxed{\ \ い\ \ }とは\boxed{\ \ う\ \ }\\
\\
\boxed{\ \ う\ \ }の選択肢\\
(\textrm{a})一致する \ \ \ (\textrm{b})平行である \ \ \ (\textrm{c})直交する \ \ \ (\textrm{d})交わるが直交しない \ \ \ \\
(\textrm{e})ねじれの位置にあって垂直である \ \ \ (\textrm{f})ねじれの位置にあって垂直でない \ \ \ \\
\\
(3)線分PQの長さは、s=\boxed{\ \ え\ \ },\ t=\boxed{\ \ お\ \ }\ のとき最小値をとり、\\
このときPQ^2=\boxed{\ \ か\ \ }\ である\\
\\
\boxed{\ \ え\ \ }\ \boxed{\ \ お\ \ }\ \boxed{\ \ か\ \ }\ の選択肢\\
(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{6}\ \ \ (\textrm{c})\frac{1}{4}\ \ \ (\textrm{d})\frac{1}{3}\ \ \ (\textrm{e})\frac{1}{2}\ \ \ (\textrm{f})\frac{2}{3}\ \ \ (\textrm{g})\frac{3}{4}\ \ \ (\textrm{h})1\ \ \ (\textrm{i})\frac{4}{3}\ \ \ (\textrm{j})\frac{3}{2}\ \ \ (\textrm{k})2\ \ \ (\textrm{l})3\ \ \ \\
\\
(4)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQの中点Mの動く領域は\\
\boxed{\ \ き\ \ }\ であり、その面積は\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}\ である。\\
\\
\boxed{\ \ き\ \ }の選択肢\\
(\textrm{a})正三角形\ \ \ (\textrm{b})直角二等辺三角形\ \ \ (\textrm{c})直角二等辺三角形でない直角三角形\ \ \ \\
(\textrm{d})直角二等辺三角形でない直角三角形でもない三角形\ \ \ (\textrm{e})正方形\ \ \ (\textrm{f})正方形でない長方形\ \ \ \\
(\textrm{g})長方形でない平行四辺形\ \ \ (\textrm{h})並行四辺形でない四角形\ \ \ (\textrm{i})五角形\ \ \ (\textrm{i})六角形\ \ \ \\
\\
(5)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQが通過する領域の体積は\\
\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\ である。
\end{eqnarray}
2022上智大学理系過去問
\begin{eqnarray}
{\large\boxed{2}}\ 一辺の長さが1である立方体QACB-CFGEを考える。\hspace{130pt}\\
\overrightarrow{ OA } = \overrightarrow{ a },\ \overrightarrow{ OB } = \overrightarrow{ b },\ \overrightarrow{ OC } = \overrightarrow{ c },\ とおき、実数s,tに対し\\
点P,Qを\\
\overrightarrow{ OP } =(1-s)\overrightarrow{ a } +s\ \overrightarrow{ b }+s\ \overrightarrow{ c },\ \ \overrightarrow{ OQ } =\overrightarrow{ a } +t\ \overrightarrow{ b }+(1-t)\ \overrightarrow{ c }\\
を満たす点とする。\\
(1)点Pは直線\boxed{\ \ あ\ \ }上にあり、点Qは直線\boxed{\ \ い\ \ }上にある。\\
(2)直線\boxed{\ \ あ\ \ }と直線\boxed{\ \ い\ \ }とは\boxed{\ \ う\ \ }\\
\\
\boxed{\ \ う\ \ }の選択肢\\
(\textrm{a})一致する \ \ \ (\textrm{b})平行である \ \ \ (\textrm{c})直交する \ \ \ (\textrm{d})交わるが直交しない \ \ \ \\
(\textrm{e})ねじれの位置にあって垂直である \ \ \ (\textrm{f})ねじれの位置にあって垂直でない \ \ \ \\
\\
(3)線分PQの長さは、s=\boxed{\ \ え\ \ },\ t=\boxed{\ \ お\ \ }\ のとき最小値をとり、\\
このときPQ^2=\boxed{\ \ か\ \ }\ である\\
\\
\boxed{\ \ え\ \ }\ \boxed{\ \ お\ \ }\ \boxed{\ \ か\ \ }\ の選択肢\\
(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{6}\ \ \ (\textrm{c})\frac{1}{4}\ \ \ (\textrm{d})\frac{1}{3}\ \ \ (\textrm{e})\frac{1}{2}\ \ \ (\textrm{f})\frac{2}{3}\ \ \ (\textrm{g})\frac{3}{4}\ \ \ (\textrm{h})1\ \ \ (\textrm{i})\frac{4}{3}\ \ \ (\textrm{j})\frac{3}{2}\ \ \ (\textrm{k})2\ \ \ (\textrm{l})3\ \ \ \\
\\
(4)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQの中点Mの動く領域は\\
\boxed{\ \ き\ \ }\ であり、その面積は\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}\ である。\\
\\
\boxed{\ \ き\ \ }の選択肢\\
(\textrm{a})正三角形\ \ \ (\textrm{b})直角二等辺三角形\ \ \ (\textrm{c})直角二等辺三角形でない直角三角形\ \ \ \\
(\textrm{d})直角二等辺三角形でない直角三角形でもない三角形\ \ \ (\textrm{e})正方形\ \ \ (\textrm{f})正方形でない長方形\ \ \ \\
(\textrm{g})長方形でない平行四辺形\ \ \ (\textrm{h})並行四辺形でない四角形\ \ \ (\textrm{i})五角形\ \ \ (\textrm{i})六角形\ \ \ \\
\\
(5)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQが通過する領域の体積は\\
\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\ である。
\end{eqnarray}
2022上智大学理系過去問
単元:
#数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 一辺の長さが1である立方体QACB-CFGEを考える。\hspace{130pt}\\
\overrightarrow{ OA } = \overrightarrow{ a },\ \overrightarrow{ OB } = \overrightarrow{ b },\ \overrightarrow{ OC } = \overrightarrow{ c },\ とおき、実数s,tに対し\\
点P,Qを\\
\overrightarrow{ OP } =(1-s)\overrightarrow{ a } +s\ \overrightarrow{ b }+s\ \overrightarrow{ c },\ \ \overrightarrow{ OQ } =\overrightarrow{ a } +t\ \overrightarrow{ b }+(1-t)\ \overrightarrow{ c }\\
を満たす点とする。\\
(1)点Pは直線\boxed{\ \ あ\ \ }上にあり、点Qは直線\boxed{\ \ い\ \ }上にある。\\
(2)直線\boxed{\ \ あ\ \ }と直線\boxed{\ \ い\ \ }とは\boxed{\ \ う\ \ }\\
\\
\boxed{\ \ う\ \ }の選択肢\\
(\textrm{a})一致する \ \ \ (\textrm{b})平行である \ \ \ (\textrm{c})直交する \ \ \ (\textrm{d})交わるが直交しない \ \ \ \\
(\textrm{e})ねじれの位置にあって垂直である \ \ \ (\textrm{f})ねじれの位置にあって垂直でない \ \ \ \\
\\
(3)線分PQの長さは、s=\boxed{\ \ え\ \ },\ t=\boxed{\ \ お\ \ }\ のとき最小値をとり、\\
このときPQ^2=\boxed{\ \ か\ \ }\ である\\
\\
\boxed{\ \ え\ \ }\ \boxed{\ \ お\ \ }\ \boxed{\ \ か\ \ }\ の選択肢\\
(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{6}\ \ \ (\textrm{c})\frac{1}{4}\ \ \ (\textrm{d})\frac{1}{3}\ \ \ (\textrm{e})\frac{1}{2}\ \ \ (\textrm{f})\frac{2}{3}\ \ \ (\textrm{g})\frac{3}{4}\ \ \ (\textrm{h})1\ \ \ (\textrm{i})\frac{4}{3}\ \ \ (\textrm{j})\frac{3}{2}\ \ \ (\textrm{k})2\ \ \ (\textrm{l})3\ \ \ \\
\\
(4)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQの中点Mの動く領域は\\
\boxed{\ \ き\ \ }\ であり、その面積は\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}\ である。\\
\\
\boxed{\ \ き\ \ }の選択肢\\
(\textrm{a})正三角形\ \ \ (\textrm{b})直角二等辺三角形\ \ \ (\textrm{c})直角二等辺三角形でない直角三角形\ \ \ \\
(\textrm{d})直角二等辺三角形でない直角三角形でもない三角形\ \ \ (\textrm{e})正方形\ \ \ (\textrm{f})正方形でない長方形\ \ \ \\
(\textrm{g})長方形でない平行四辺形\ \ \ (\textrm{h})並行四辺形でない四角形\ \ \ (\textrm{i})五角形\ \ \ (\textrm{i})六角形\ \ \ \\
\\
(5)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQが通過する領域の体積は\\
\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\ である。
\end{eqnarray}
2022上智大学理系過去問
\begin{eqnarray}
{\large\boxed{2}}\ 一辺の長さが1である立方体QACB-CFGEを考える。\hspace{130pt}\\
\overrightarrow{ OA } = \overrightarrow{ a },\ \overrightarrow{ OB } = \overrightarrow{ b },\ \overrightarrow{ OC } = \overrightarrow{ c },\ とおき、実数s,tに対し\\
点P,Qを\\
\overrightarrow{ OP } =(1-s)\overrightarrow{ a } +s\ \overrightarrow{ b }+s\ \overrightarrow{ c },\ \ \overrightarrow{ OQ } =\overrightarrow{ a } +t\ \overrightarrow{ b }+(1-t)\ \overrightarrow{ c }\\
を満たす点とする。\\
(1)点Pは直線\boxed{\ \ あ\ \ }上にあり、点Qは直線\boxed{\ \ い\ \ }上にある。\\
(2)直線\boxed{\ \ あ\ \ }と直線\boxed{\ \ い\ \ }とは\boxed{\ \ う\ \ }\\
\\
\boxed{\ \ う\ \ }の選択肢\\
(\textrm{a})一致する \ \ \ (\textrm{b})平行である \ \ \ (\textrm{c})直交する \ \ \ (\textrm{d})交わるが直交しない \ \ \ \\
(\textrm{e})ねじれの位置にあって垂直である \ \ \ (\textrm{f})ねじれの位置にあって垂直でない \ \ \ \\
\\
(3)線分PQの長さは、s=\boxed{\ \ え\ \ },\ t=\boxed{\ \ お\ \ }\ のとき最小値をとり、\\
このときPQ^2=\boxed{\ \ か\ \ }\ である\\
\\
\boxed{\ \ え\ \ }\ \boxed{\ \ お\ \ }\ \boxed{\ \ か\ \ }\ の選択肢\\
(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{6}\ \ \ (\textrm{c})\frac{1}{4}\ \ \ (\textrm{d})\frac{1}{3}\ \ \ (\textrm{e})\frac{1}{2}\ \ \ (\textrm{f})\frac{2}{3}\ \ \ (\textrm{g})\frac{3}{4}\ \ \ (\textrm{h})1\ \ \ (\textrm{i})\frac{4}{3}\ \ \ (\textrm{j})\frac{3}{2}\ \ \ (\textrm{k})2\ \ \ (\textrm{l})3\ \ \ \\
\\
(4)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQの中点Mの動く領域は\\
\boxed{\ \ き\ \ }\ であり、その面積は\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}\ である。\\
\\
\boxed{\ \ き\ \ }の選択肢\\
(\textrm{a})正三角形\ \ \ (\textrm{b})直角二等辺三角形\ \ \ (\textrm{c})直角二等辺三角形でない直角三角形\ \ \ \\
(\textrm{d})直角二等辺三角形でない直角三角形でもない三角形\ \ \ (\textrm{e})正方形\ \ \ (\textrm{f})正方形でない長方形\ \ \ \\
(\textrm{g})長方形でない平行四辺形\ \ \ (\textrm{h})並行四辺形でない四角形\ \ \ (\textrm{i})五角形\ \ \ (\textrm{i})六角形\ \ \ \\
\\
(5)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQが通過する領域の体積は\\
\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\ である。
\end{eqnarray}
2022上智大学理系過去問
投稿日:2022.10.12