福田の数学〜上智大学2022年TEAP理系型第2問〜空間ベクトルと軌跡 - 質問解決D.B.(データベース)

福田の数学〜上智大学2022年TEAP理系型第2問〜空間ベクトルと軌跡

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 一辺の長さが1である立方体QACB-CFGEを考える。\hspace{130pt}\\
\overrightarrow{ OA } = \overrightarrow{ a },\ \overrightarrow{ OB } = \overrightarrow{ b },\ \overrightarrow{ OC } = \overrightarrow{ c },\ とおき、実数s,tに対し\\
点P,Qを\\
\overrightarrow{ OP } =(1-s)\overrightarrow{ a } +s\ \overrightarrow{ b }+s\ \overrightarrow{ c },\ \ \overrightarrow{ OQ } =\overrightarrow{ a } +t\ \overrightarrow{ b }+(1-t)\ \overrightarrow{ c }\\
を満たす点とする。\\
(1)点Pは直線\boxed{\ \ あ\ \ }上にあり、点Qは直線\boxed{\ \ い\ \ }上にある。\\
(2)直線\boxed{\ \ あ\ \ }と直線\boxed{\ \ い\ \ }とは\boxed{\ \ う\ \ }\\
\\
\boxed{\ \ う\ \ }の選択肢\\
(\textrm{a})一致する \ \ \ (\textrm{b})平行である \ \ \ (\textrm{c})直交する \ \ \ (\textrm{d})交わるが直交しない \ \ \ \\
(\textrm{e})ねじれの位置にあって垂直である \ \ \ (\textrm{f})ねじれの位置にあって垂直でない \ \ \ \\
\\
(3)線分PQの長さは、s=\boxed{\ \ え\ \ },\ t=\boxed{\ \ お\ \ }\ のとき最小値をとり、\\
このときPQ^2=\boxed{\ \ か\ \ }\ である\\
\\
\boxed{\ \ え\ \ }\ \boxed{\ \ お\ \ }\ \boxed{\ \ か\ \ }\ の選択肢\\
(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{6}\ \ \ (\textrm{c})\frac{1}{4}\ \ \ (\textrm{d})\frac{1}{3}\ \ \ (\textrm{e})\frac{1}{2}\ \ \ (\textrm{f})\frac{2}{3}\ \ \ (\textrm{g})\frac{3}{4}\ \ \ (\textrm{h})1\ \ \ (\textrm{i})\frac{4}{3}\ \ \ (\textrm{j})\frac{3}{2}\ \ \ (\textrm{k})2\ \ \ (\textrm{l})3\ \ \ \\
\\
(4)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQの中点Mの動く領域は\\
\boxed{\ \ き\ \ }\ であり、その面積は\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}\ である。\\
\\
\boxed{\ \ き\ \ }の選択肢\\
(\textrm{a})正三角形\ \ \ (\textrm{b})直角二等辺三角形\ \ \ (\textrm{c})直角二等辺三角形でない直角三角形\ \ \ \\
(\textrm{d})直角二等辺三角形でない直角三角形でもない三角形\ \ \ (\textrm{e})正方形\ \ \ (\textrm{f})正方形でない長方形\ \ \ \\
(\textrm{g})長方形でない平行四辺形\ \ \ (\textrm{h})並行四辺形でない四角形\ \ \ (\textrm{i})五角形\ \ \ (\textrm{i})六角形\ \ \ \\
\\
(5)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQが通過する領域の体積は\\
\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\ である。
\end{eqnarray}

2022上智大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 一辺の長さが1である立方体QACB-CFGEを考える。\hspace{130pt}\\
\overrightarrow{ OA } = \overrightarrow{ a },\ \overrightarrow{ OB } = \overrightarrow{ b },\ \overrightarrow{ OC } = \overrightarrow{ c },\ とおき、実数s,tに対し\\
点P,Qを\\
\overrightarrow{ OP } =(1-s)\overrightarrow{ a } +s\ \overrightarrow{ b }+s\ \overrightarrow{ c },\ \ \overrightarrow{ OQ } =\overrightarrow{ a } +t\ \overrightarrow{ b }+(1-t)\ \overrightarrow{ c }\\
を満たす点とする。\\
(1)点Pは直線\boxed{\ \ あ\ \ }上にあり、点Qは直線\boxed{\ \ い\ \ }上にある。\\
(2)直線\boxed{\ \ あ\ \ }と直線\boxed{\ \ い\ \ }とは\boxed{\ \ う\ \ }\\
\\
\boxed{\ \ う\ \ }の選択肢\\
(\textrm{a})一致する \ \ \ (\textrm{b})平行である \ \ \ (\textrm{c})直交する \ \ \ (\textrm{d})交わるが直交しない \ \ \ \\
(\textrm{e})ねじれの位置にあって垂直である \ \ \ (\textrm{f})ねじれの位置にあって垂直でない \ \ \ \\
\\
(3)線分PQの長さは、s=\boxed{\ \ え\ \ },\ t=\boxed{\ \ お\ \ }\ のとき最小値をとり、\\
このときPQ^2=\boxed{\ \ か\ \ }\ である\\
\\
\boxed{\ \ え\ \ }\ \boxed{\ \ お\ \ }\ \boxed{\ \ か\ \ }\ の選択肢\\
(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{6}\ \ \ (\textrm{c})\frac{1}{4}\ \ \ (\textrm{d})\frac{1}{3}\ \ \ (\textrm{e})\frac{1}{2}\ \ \ (\textrm{f})\frac{2}{3}\ \ \ (\textrm{g})\frac{3}{4}\ \ \ (\textrm{h})1\ \ \ (\textrm{i})\frac{4}{3}\ \ \ (\textrm{j})\frac{3}{2}\ \ \ (\textrm{k})2\ \ \ (\textrm{l})3\ \ \ \\
\\
(4)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQの中点Mの動く領域は\\
\boxed{\ \ き\ \ }\ であり、その面積は\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}\ である。\\
\\
\boxed{\ \ き\ \ }の選択肢\\
(\textrm{a})正三角形\ \ \ (\textrm{b})直角二等辺三角形\ \ \ (\textrm{c})直角二等辺三角形でない直角三角形\ \ \ \\
(\textrm{d})直角二等辺三角形でない直角三角形でもない三角形\ \ \ (\textrm{e})正方形\ \ \ (\textrm{f})正方形でない長方形\ \ \ \\
(\textrm{g})長方形でない平行四辺形\ \ \ (\textrm{h})並行四辺形でない四角形\ \ \ (\textrm{i})五角形\ \ \ (\textrm{i})六角形\ \ \ \\
\\
(5)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQが通過する領域の体積は\\
\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\ である。
\end{eqnarray}

2022上智大学理系過去問
投稿日:2022.10.12

<関連動画>

福田の数学〜慶應義塾大学2021年看護医療学部第4問〜空間ベクトルと三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} P(0,0,-1),\ Q(0,1,-2),\ R(1,0,-2)を頂点とする三角形の面積は\boxed{\ \ ヘ\ \ }である。\\
aを実数とし、\overrightarrow{ v }=(a,a,3)とする。点P',Q',R'を\\
\overrightarrow{ OP' }=\overrightarrow{ OP }+\overrightarrow{ v },\ \overrightarrow{ OQ' }=\overrightarrow{ OQ }+\overrightarrow{ v },\ \overrightarrow{ OR' }=\overrightarrow{ OR }+\overrightarrow{ v }\\
によって定め、さらに線分PP',QQ',RR'がxy平面と交わる点をP'',Q'',R''とする。\\
このとき、P''の座標は\boxed{\ \ ホ\ \ }、Q''の座標は\boxed{\ \ マ\ \ }、R''の座標は\boxed{\ \ ミ\ \ }である。\\
\triangle P''Q''R''が正三角形になるのはa=\boxed{\ \ ム\ \ }のときである。\\
3点P'',Q'',R''が同一直線上にあるのはa=\boxed{\ \ メ\ \ }のときである。a \gt \boxed{\ \ メ\ \ }のとき、\\
\triangle P''Q''R''の面積をaで表すと\boxed{\ \ モ\ \ }となる。
\end{eqnarray}

2021慶應義塾大学看護医療学部過去問
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第2問〜立方体の切断と位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#立体図形#立体切断#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 一辺の長さが2である立方体OADB-CFGEを考える。
$\overrightarrow{OA}$=$\overrightarrow{a}$, $\overrightarrow{OB}$=$\overrightarrow{b}$, $\overrightarrow{OC}$=$\overrightarrow{c}$とおく。辺AFの中点をM、辺BDの中点をNとし、3点O,M,Nを通る平面$\pi$で立方体を切断する。
(1)平面$\pi$は辺AF,BD以外に辺$\boxed{\ \ あ\ \ }$とその両端以外で交わる。
(2)平面$\pi$と辺$\boxed{\ \ あ\ \ }$との交点をPとすると$\overrightarrow{OP}$=$\boxed{\ \ い\ \ } \overrightarrow{a}$+$\boxed{\ \ う\ \ } \overrightarrow{b}$+$\boxed{\ \ え\ \ } \overrightarrow{c}$
(3)断面の面積は$\displaystyle\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\sqrt{\boxed{\ \ ケ\ \ }}$である。
(4)切断されてできる立体のうち、頂点Aを含むものの体積は$\displaystyle\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$である。
(5)平面$\pi$と線分CDとの交点をQとする。
(i)点Qは線分CDを$\boxed{\ \ お\ \ }$に内分する。
(ii)$\overrightarrow{OQ}$=$\boxed{\ \ か\ \ } \overrightarrow{a}$+$\boxed{\ \ き\ \ } \overrightarrow{b}$+$\boxed{\ \ く\ \ } \overrightarrow{c}$である。

$\boxed{\ \ い\ \ }~\boxed{\ \ え\ \ }$, $\boxed{\ \ か\ \ }~\boxed{\ \ く\ \ }$の選択肢
(a)0 (b)1 (c)$\frac{1}{2}$ (d)$\frac{1}{3}$ (e)$\frac{2}{3}$ (f)$\frac{1}{4}$ (g)$\frac{3}{4}$ (h)$\frac{1}{5}$ 
(i)$\frac{2}{5}$ (j)$\frac{3}{5}$ (k)$\frac{4}{5}$ (l)$\frac{1}{6}$ (m)$\frac{5}{6}$

$\boxed{\ \ お\ \ }$の選択肢
(a)1:1 (b)2:1 (c)1:2 (d)3:1 (e)1:3 (f)4:1 (g)3:2 
(h)2:3 (i)1:4 (j)5:1 (k)1:5 
この動画を見る 

福田の数学〜名古屋大学2024年理系第3問〜空間内の平面上の領域と原点との距離の最小

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標空間の3点A(3,1,3), B(4,2,2), C(4,0,1)の定める平面を$H$とする。
また、
$\overrightarrow{AP}$=$s\overrightarrow{AB}$+$t\overrightarrow{AC}$ ($s$, $t$は非負の実数)
を満たすすべての点Pからなる領域を$K$とする。
(1)内積$\overrightarrow{AB}・\overrightarrow{AB}$, $\overrightarrow{AC}・\overrightarrow{AC}$, $\overrightarrow{AB}・\overrightarrow{AC}$を求めよ。
(2)原点O(0,0,0)から平面$H$に下ろした垂線の足をQとする。$\overrightarrow{AQ}$を$\overrightarrow{AB}$と$\overrightarrow{AC}$で表せ。
(3)領域$K$上の点Pに対して、線分QP上の点で$\overrightarrow{AR}$=$r\overrightarrow{AC}$ ($r$は非負の実数)を満たす点Rが存在することを示せ。
(4)領域$K$において原点Oからの距離が最小となる点Sの座標を求めよ。
この動画を見る 

【数B】空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。
この動画を見る 

2023年京大の空間ベクトル!ベクトルが苦手な人も絶対に取りたい問題【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
空間内の4点$O、A、B、C$は同一平面上にないとする。点$D,P,O$を次のように定める。
点$D$は$\overrightarrow{OD}=\overrightarrow{OA}+\overrightarrow{2OB}+\overrightarrow{3OC}$を満 たし、点Pは線分$OA$を1: 2に内分し、点Qは線分$OB$の中点である。
さらに、直線$OD$上の点$R$を $OC$が交点を持つように定める。
このとき、線分$OR$の長さと線分$RD$の長さの比$OR: RD$を求めよ。

2023京都大過去問
この動画を見る 
PAGE TOP