福田のおもしろ数学456〜5変数の連立方程式 - 質問解決D.B.(データベース)

福田のおもしろ数学456〜5変数の連立方程式

問題文全文(内容文):

実数$x,y,z,w,t$に対して次の連立方程式を解け。

$\begin{eqnarray}
\left\{
\begin{array}{l}
\hspace{ 2pt } x^5=y+y^5= \cdots ① \\
\hspace{ 2pt }y^5=z+z^5=\cdots ② \\\
\hspace{ 0.1pt }z^5=w+w^5=\cdots ③ \\\
\hspace{ 0.2pt }w^5=t+t^5=\cdots ④ \\\
\hspace{ 1pt }t^5=x+x^5= \cdots ⑤
\end{array}
\right.
\end{eqnarray}$
    
単元: #連立方程式#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

実数$x,y,z,w,t$に対して次の連立方程式を解け。

$\begin{eqnarray}
\left\{
\begin{array}{l}
\hspace{ 2pt } x^5=y+y^5= \cdots ① \\
\hspace{ 2pt }y^5=z+z^5=\cdots ② \\\
\hspace{ 0.1pt }z^5=w+w^5=\cdots ③ \\\
\hspace{ 0.2pt }w^5=t+t^5=\cdots ④ \\\
\hspace{ 1pt }t^5=x+x^5= \cdots ⑤
\end{array}
\right.
\end{eqnarray}$
    
投稿日:2025.04.02

<関連動画>

福田のおもしろ数学491〜三角関数の連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#三角関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$x,y$は実数であり

$\begin{eqnarray}
\left\{
\begin{array}{l}
\sin x+\cos y=1 \\
\cos x+\sin y=-1
\end{array}
\right.
\end{eqnarray}$

のとき、$\cos 2x=\cos 2y$となることを

証明せよ。
    
この動画を見る 

福田のおもしろ数学408〜変数が素数である連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\begin{eqnarray}
\left\{
\begin{array}{l}
pq=r+1 \\
2(p^2+q^2)=r^2+1
\end{array}
\right.
\end{eqnarray}$

を満たす素数$p,q,r$を求めて下さい。
この動画を見る 

【見た目より難しい…!】連立方程式:福岡大学附属大濠高等学校~全国入試問題解法

単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#福岡大学附属大濠高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+4y=23\\
2x-6y=-15
\end{array}
\right.
\end{eqnarray}\;$を解け。
この動画を見る 

【高校受験対策/数学】死守52

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守52

①$8+3\times(-2)$を計算しなさい。

➁$9a+1-2(3a-2)$を計算しなさい。

③$8x^2y \times(-6xy)$を計算しなさい。

④$\frac{9}{\sqrt{3}}+\sqrt{12}$を計算しなさい。

⑤二次方程式$x^2+x-6=0$を解きなさい。

⑥1本$a$円の鉛筆3本と1冊$b$円のノート 5冊の代金の合計は500円より高い。
これらの数量の関係を不等式で表しなさい。

⑦右の図は三角柱ABCDEFである。
辺ABとねじれの位置にある辺は何本あるか答えなさい。

⑧右の図のような$△ABC$がある。
3つの頂点、$A$、$B$、$C$ から等しい距離にある点$P$を作図によって求め、$P$の記号をつけなさい。
ただし、作図に用いた線は残しておくこと。

⑨A中学校の生徒数は、男女あわせて365人である。
そのうち男子の80%と女子の60%が運動部に所属しており、その人数は257人であった。
このとき、A中学校の男子の生徒数と女子の生徒数をそれぞれ求めなさい。

⑩箱の中に1、2、3、4の数が1つずつ書かれた同じ大きさの玉が1個ずつ入っている。
中を見ないでこの箱から同時に2個の玉を取り出すとき、取り出した玉の数の和が5以下となる確率を求めなさい。

この動画を見る 

#63 #数検1級1次過去問 #連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: ますただ
問題文全文(内容文):
$xy \neq 0$のとき、次の連立方程式を解け。
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x+y)(x^2+y^2)=\displaystyle \frac{40}{3}xy \\
(x^2+y^2)(x^4-y^4)=\displaystyle \frac{800}{9}x^2y^2
\end{array}
\right.
\end{eqnarray}$

出典:数検1級1次
この動画を見る 
PAGE TOP