山形大(医)整式の剰余 積の微分の導出 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

山形大(医)整式の剰余 積の微分の導出 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
2006山形大学過去問題
整式P(x)を$(x+1)^2$で割ると余りが9、$(x-1)^2$で割ると余りは1
P(x)を$(x+1)^2(x-1)^2$で割った余りを求めよ。
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2006山形大学過去問題
整式P(x)を$(x+1)^2$で割ると余りが9、$(x-1)^2$で割ると余りは1
P(x)を$(x+1)^2(x-1)^2$で割った余りを求めよ。
投稿日:2018.05.05

<関連動画>

【高校数学】毎日積分32日目【共通テスト直前特別編】【毎日17時投稿】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
偶関数・奇関数の積分について解説していきます.
この動画を見る 

福田の数学〜上智大学2024TEAP利用型文系第3問(4)〜線分の通過範囲の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}(4)$座標平面上で放物線$y=x^2$上の点P$(t,t^2)(0 \leqq t \leqq 1)$における接線$y=-(x+1)^2$の二つの共有点の中点をQとする。ただし、共有点が1つの場合は、その共有点をQとする。Qの座標は$(\boxed{ユ}t+\boxed{ヨ}
,\boxed{ラ}t^2+\boxed{リ}t+\boxed{ル})$である。
tが$0 \leqq t \leqq1$の範囲を動くとき線分PQが動いてできる図形の面積は$\frac{\boxed{レ}}{\boxed{ロ}}$である
この動画を見る 

19神奈川県教員採用試験(数学:面積の最小値)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#不定積分・定積分#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$y=x^2-5x+4$と$y=m(x-2)$で囲まれた面積の最小値とそのときのmの値を求めよ。
この動画を見る 

【数Ⅱ】【微分法と積分法】条件からの関数決定1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x) = ax^2 + bx + c$において、
$f(-1) = 2$, $f'(0) = 0$, $\int_{0}^{1} f(x) \,dx = -2$であるとき、
定数 a, b, c の値を求めよ。
この動画を見る 

毎日積分~47都道府県制覇への道~ #Shorts #高校数学 #積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
毎日積分~47都道府県制覇への道
この動画を見る 
PAGE TOP