【高校数学】 数Ⅰ-95 多角形の面積 - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-95  多角形の面積

問題文全文(内容文):
◎次のような図形の面積Sを求めよう。
①$AB=5,BC=8,CD=4,\angle B=\angle C=60°$の四角形ABCD
②1辺の長さが2の正十二角形
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次のような図形の面積Sを求めよう。
①$AB=5,BC=8,CD=4,\angle B=\angle C=60°$の四角形ABCD
②1辺の長さが2の正十二角形
投稿日:2014.11.19

<関連動画>

福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(1)〜楕円と複素数平面

アイキャッチ画像
単元: #平面上の曲線#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#2次曲線#複素数平面#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)座標平面において、点$(-1,\ 0)$からの距離と点$(1,\ 0)$からの距離の和が4
である点は方程式$\frac{x^2}{\boxed{\ \ ア\ \ }}+\frac{y^2}{\boxed{\ \ イ\ \ }}=1$で表される曲線C上にある。点$(x,\ y)$
が曲線C上を動くとき、点$(x,\ y)$と点$(-1,\ 0)$の距離をdとおけば、dの最小値
は$\boxed{\ \ ウ\ \ }$、最大値は$\boxed{\ \ エ\ \ }$となる。複素数$z$が$|z|+|z-4|=8$を満たすとき、
$|z|$のとりうる範囲は$\boxed{\ \ オ\ \ } \leqq |z| \leqq \boxed{\ \ カ\ \ }$である。

2021明治大学全統過去問
この動画を見る 

どっちがでかい?あれを証明します。

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$51^{100}$ VS $100!$
この動画を見る 

東大2020文系第2問 ヨビノリたくみ&東大受験芸人たわし

アイキャッチ画像
単元: #数Ⅰ#数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
4本の直線が縦横に引かれている
交わる箇所の点は16個
この点の中から5個選ぶ
(1)
5個選んだ時に、その点を通らない直線がちょうど2つになる場合の確率を求めよ

(2)
どの直線も少なくとも1つ通る場合の確率を求めよ

出典:2020年東京大学 文系第2問
この動画を見る 

垂線の長さの和=❓ B

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
DE+EF=?
*図は動画内参照

東北学院高等学校
この動画を見る 

ただの三乗根の計算

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\sqrt[3]{81}+2\sqrt[3]{9}+4$
$\dfrac{12}{a}+\dfrac{6}{a^2}+\dfrac{1}{a^3}$の値を求めよ.
この動画を見る 
PAGE TOP