ポスターの並び替え 確率 仙台育英(宮城) - 質問解決D.B.(データベース)

ポスターの並び替え 確率 仙台育英(宮城)

問題文全文(内容文):
I I E K U
の5枚のポスターがある。5枚すべてを使って並べて
I K U E I
となる確率を求めよ。

仙台育英
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
I I E K U
の5枚のポスターがある。5枚すべてを使って並べて
I K U E I
となる確率を求めよ。

仙台育英
投稿日:2023.08.06

<関連動画>

【共通テスト】数学IA 第3問確率がめっちゃ簡単になる本質テクニック、教えます(2023年本試)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第3問確率が簡単になるテクニック、解説動画です

球が4つある。
赤、青、黄、緑、紫のうちいずれか1色でそれぞれ塗る。
1本の紐で繋がれた2つの球は異なる色。
赤をちょうど2回使う塗り方は何通り?
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第2問〜デコボコ数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}$10進法で表したときm桁$(m \gt 0)$である正の整数nの第i桁目$(1 \leqq i \leqq m)$を
$m_i$としたとき、$i\neq j$のとき$n_i\neq n_j$であり、かつ、次の$(\textrm{a})$または$(\textrm{b})$のいずれか
が成り立つとき、nを10進法m桁のデコボコ数と呼ぶことにする。
$(\textrm{a})1 \leqq i \lt m$であるiに対して、
iが奇数の時$n_i \lt n_{i+1}$となり、
iが偶数の時$n_i \gt n_{i+1}$となる。
$(\textrm{b})1 \leqq i \lt m$であるiに対して、$i$が奇数の時$n_i \gt n_{i+1}$となり、
$i$が偶数の時$n_i \lt n_{i+1}$となる。

例えば、361は$(\textrm{a})$を満たす10進法3桁のデコボコ数であり、$52409$は$(\textrm{b})$を
満たす10進法5桁のデコボコ数である。なお、4191は$(\textrm{a})$を満たすが「$i\neq j$のとき
$n_i\neq n_j$である」条件を満たさないため、10進法4桁のデコボコ数ではない。
(1)nが10進法2桁の数$(10 \leqq n \leqq 99)$の場合、
$n_1\neq n_2$であれば$(\textrm{a})$または$(\textrm{b})$を
満たすため、10進法2桁のデコボコ数は$\boxed{\ \ アイ\ \ }$個ある。
(2)nが10進法3桁の数$(100 \leqq n \leqq 999)$の場合、$(\textrm{a})$を満たすデコボコ数は
$\boxed{\ \ ウエオ\ \ }$個、$(\textrm{b})$を満たすデコボコ数は$\boxed{\ \ カキク\ \ }$個あるため、
10進法3桁のデコボコ数は合計$\boxed{\ \ ケコサ\ \ }$個ある。
(3)nが10進法4桁の数$(1000 \leqq n \leqq 9999)$の場合、$(\textrm{a})$を満たすデコボコ数は
$\boxed{\ \ シスセソ\ \ }$個、$(\textrm{b})$を満たすデコボコ数は$\boxed{\ \ タチツテ\ \ }$個あるため、
10進法4桁のデコボコ数は合計$\boxed{\ \ トナニヌ\ \ }$個ある。また10進法4桁のデコボコ数
の中で最も大きなものは$\boxed{\ \ ネノハヒ\ \ }$、最も小さなものは$\boxed{\ \ フヘホマ\ \ }$である。

2022慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第1問〜ソーシャルディスタンスを保つ座り方の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (1)ある公園に、図のように(※動画参照)10個の丸い椅子が、
東側に5個横一列に、西側に5個一列に、それぞれ1m間隔で置かれている。また東側の
椅子と西側の椅子は2つずつ背中合わせに置かれていて、その間隔は1mとなっている。
Aさんはいつも東側の椅子のいずれかに、Bさんは西側の椅子のいずれかに、
同じ確率で座る。このとき、AさんとBさんの座る日値がソーシャルディスタンスの
2m以上である確率は$\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$である。
なお、AさんもBさんも椅子の中心に座り、ソーシャルディスタンスは座っている
椅子の中心間の距離で測るものとする。
この動画を見る 

福田のおもしろ数学479〜ちょうど9回でゲームが終了する確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

コインを投げて表が出れば$1$点獲得し、裏が出たら

$2$点を失う。

コインを繰り返し投げて、持ち点が$1$点以下になれば

終了するゲームをする。

最初$10$点をもち、ゲームを始めて$9$回目にゲームが

終了する確率を求めて下さい。
    
この動画を見る 

【数A】確率:条件付き確率の考え方

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率:条件付き確率の考え方に関して解説していきます.
この動画を見る 
PAGE TOP