【数Ⅲ】【関数と極限】次の無限級数が0以上の実数xに対して収束することを示せ。和のf(x)のグラフをかけ。√x + √x/1+√x + √x/(1+√x)² + … + √x/(1+√x)^n-1 … - 質問解決D.B.(データベース)

【数Ⅲ】【関数と極限】次の無限級数が0以上の実数xに対して収束することを示せ。和のf(x)のグラフをかけ。√x + √x/1+√x + √x/(1+√x)² + … + √x/(1+√x)^n-1 …

問題文全文(内容文):
次の無限級数が$0$以上のすべての実数$x$に対して収束することを示せ。
また,その和を$f(x)$とおくとき,関数$y=f(x)$のグラフをかけ。

$\frac{\sqrt{x}}{1+\sqrt{x}} + \frac{\sqrt{x}}{(1+\sqrt{x})^2} + \cdots + \frac{\sqrt{x}}{(1+\sqrt{x})^{n-1}} + \cdots$
チャプター:

0:00 問題と方針
0:33 解説

単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の無限級数が$0$以上のすべての実数$x$に対して収束することを示せ。
また,その和を$f(x)$とおくとき,関数$y=f(x)$のグラフをかけ。

$\frac{\sqrt{x}}{1+\sqrt{x}} + \frac{\sqrt{x}}{(1+\sqrt{x})^2} + \cdots + \frac{\sqrt{x}}{(1+\sqrt{x})^{n-1}} + \cdots$
投稿日:2025.11.04

<関連動画>

【高校数学】数Ⅲ-69 数列の極限⑤(無限等比数列)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{n\to\infty}3^n$

②$\displaystyle \lim_{n\to\infty}1^n$

③$\displaystyle \lim_{n\to\infty}\left(-\dfrac{1}{3}\right)^n$

④$\displaystyle \lim_{n\to\infty}(-3)^n$

⑤$\displaystyle \lim_{n\to\infty}\dfrac{3^n+4^n}{5^n}$

⑥$\displaystyle \lim_{n\to\infty}\dfrac{2^n}{1+2^n}$

⑦$\displaystyle \lim_{n\to\infty}\dfrac{5^n+3^n}{2^n-3^n}$

⑧$\displaystyle \lim_{n\to\infty}\dfrac{2^{n+1}-4^{n+1}}{3^n-4^n}$
この動画を見る 

福田のわかった数学〜高校3年生理系079〜グラフを描こう(1)分数関数のグラフ

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(1)

$y=\frac{x^2}{x-1}$のグラフを描け。

ただし凹凸は調べなくてよい。
この動画を見る 

【数Ⅲ】関数と極限:逆関数の交点

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)=\sqrt1{2(x+1)} - 1$について、次の問いに答えなさい。
(1) 関数 $y=f(x)$の逆関数 $y=f^{-1}(x) $を求めよ。
(2) 関数 $y=f(x)$と $y=f^{-1}(x)$ のグラフの共有点の座標を求めよ。
この動画を見る 

福田のおもしろ数学318〜合成関数と関数方程式

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
実数から実数への関数$f(x)$がすべての実数$x$で
$f(f(x)f(1-x))=f(x)$
かつ$f(f(x))=1-f(x)$を満たす。
このような$f(x)$をすべて求めて下さい。
この動画を見る 

【演習編!】演習で無限等比級数の知識をどう使う?!【数学III】

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
(1)$\displaystyle \sum_{n=1}^\infty \frac{1}{2}(\frac{5}{4})^{n-1}$
(2)$\displaystyle \sum_{n=1}^\infty \frac{4^n-3^{n+1}}{3^{2n}}$
この動画を見る 
PAGE TOP