高知大(医他) 二次方程式整数解 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

高知大(医他) 二次方程式整数解 Mathematics Japanese university entrance exam

問題文全文(内容文):
高知大学過去問題
a自然数、p、q素数
$ax^2-px+q=0$の2解が整数となる(a,p,q)の組をすべて求めよ
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
高知大学過去問題
a自然数、p、q素数
$ax^2-px+q=0$の2解が整数となる(a,p,q)の組をすべて求めよ
投稿日:2018.12.03

<関連動画>

福田の数学〜慶應義塾大学2022年経済学部第5問〜指数対数の性質と格子点と2次関数の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$aを2以上の整数、pを整数とし、$s=2^{2p+1}$とおく。実数$x,y$が等式
$2^{a+1}\log_23^x+2x\log_2(\frac{1}{3})^x=\log_s9^y$
を満たすとき、yをxの関数として表したものを$y=f(x)$とする。
(1)対数の記号を使わずに、$f(x)$を$a,p$およびxを用いて表せ。
(2)$a=2,\ p=0$とする。このとき、$n \leqq f(m)$を満たし、かつ、$m+n$が正となる
ような整数の組(m,n)の個数を求めよ。
(3)$y=f(x)(0 \leqq x \leqq 2^{a+1})$の最大値が$2^{3a}$以下となるような整数pの
最大値と最小値を、それぞれaを用いて表せ。

2022慶應義塾大学経済学部過去問
この動画を見る 

中学生でも理解可能。ルートの中の二乗  奈良大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=a^2+1$ , $a=\sqrt 6 -2$
$\sqrt {x+2a} + \sqrt {x-2a} =?$

奈良大学
この動画を見る 

【数I】中高一貫校用問題集(数式・関数編)数と式:多項式:次の式を展開しよう。(a-b)(a+b)(a²+ab+b²)(a²-ab+b²)

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅰ#数と式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を展開しよう。
$(a-b)(a+b)(a^2+ab+b^2)(a^2-ab+b^2)$
この動画を見る 

面積比 2024専修大松戸

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDは平行四辺形
△EHI:▱ABCD=?
*図は動画内参照
この動画を見る 

数検準1級1次過去問【2020年12月】3番:三角形の面積(ベクトル)

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#図形と計量#三角比への応用(正弦・余弦・面積)#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$ $0(0,0,0),A(-2,1,1)B(-1,2,0)$を頂点に持つ
$\triangle{OAB}$の面積$S$を求めよ.
この動画を見る 
PAGE TOP