【数学B/平面ベクトル】ベクトル方程式の総まとめ - 質問解決D.B.(データベース)

【数学B/平面ベクトル】ベクトル方程式の総まとめ

問題文全文(内容文):
(1)
点$A(2,4),\vec{ d }=(1,3)$のとき、点$A$を通り、$\vec{ d }$が方向ベクトルである直線の媒介変数表示を、媒介変数を$t$として求めよ。
また、$t$を消去した式で表せ。


(2)
2点$A(-1,2),$ $B(3,5)$を通る直線の媒介変数表示を、媒介変数を$t$として求めよ。


(3)
点$A(-1,2),\vec{ n }=(3,4)$のとき、点$A$を通り、$\vec{ n }$が法線ベクトルである直線の方程式を求めよ。


(4)
点$A(1,2)$を中心とし、半径が$3$である円の方程式を、ベクトルを利用して求めよ。
チャプター:

0:00 オープニング
0:21 ポイント
5:17 方向ベクトルに平行な直線
8:39 2点を通る直線
12:55 法線ベクトルに垂直な直線
16:25 円

単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
(1)
点$A(2,4),\vec{ d }=(1,3)$のとき、点$A$を通り、$\vec{ d }$が方向ベクトルである直線の媒介変数表示を、媒介変数を$t$として求めよ。
また、$t$を消去した式で表せ。


(2)
2点$A(-1,2),$ $B(3,5)$を通る直線の媒介変数表示を、媒介変数を$t$として求めよ。


(3)
点$A(-1,2),\vec{ n }=(3,4)$のとき、点$A$を通り、$\vec{ n }$が法線ベクトルである直線の方程式を求めよ。


(4)
点$A(1,2)$を中心とし、半径が$3$である円の方程式を、ベクトルを利用して求めよ。
投稿日:2022.01.21

<関連動画>

【数C】ベクトル:正射影ベクトルの仕組みと使い方

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
正射影ベクトルについて解説します!
この動画を見る 

福田の数学〜千葉大学2023年第5問〜垂線の足の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 点Oを原点とする座標平面において、点Aと点Bが$\overrightarrow{OA}$・$\overrightarrow{OA}$=5, $\overrightarrow{OB}$・$\overrightarrow{OB}$=2, $\overrightarrow{OA}$・$\overrightarrow{OB}$=3を満たすとする。
(1)$\overrightarrow{OB}$=$k\overrightarrow{OA}$ となるような実数$k$は存在しないことを示せ。
(2)点Bから直線OAに下ろした垂線とOAとの交点をHとする。$\overrightarrow{HB}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
(3)実数$t$に対し、直線OA上の点Pを$\overrightarrow{OP}$=$t\overrightarrow{OA}$となるようにとる。同様に直線OB上の点Qを$\overrightarrow{OQ}$=(1-$t$)$\overrightarrow{OB}$となるようにとる。点Pを通り直線OAと直交する直線を$l_1$とし、点Qを通り直線OBと直交する直線を$l_2$とする。
$l_1$と$l_2$の交点をRとするとき、$\overrightarrow{OR}$を$\overrightarrow{OA}$,$\overrightarrow{OB}$,$t$を用いて表せ。
(4)3点O,A,Bを通る円の中心をCとするとき、$\overrightarrow{OC}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
この動画を見る 

福田の一夜漬け数学〜平面ベクトル(1)〜受験編・文理共通

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$k$を正の実数とする。点Pは$\triangle ABC$の内部にあり、
$k\ \overrightarrow{ AP }+5\ \overrightarrow{ BP }+3\ \overrightarrow{ CP }=\overrightarrow{ 0 }\\$
を満たしている。また、辺$BC$を$3:5$に内分する点を$D$とする。
(1)$\overrightarrow{ AP }$を、$\overrightarrow{ AB },\overrightarrow{ AC },k$を用いて表せ。
(2)3点$A,P,D$は一直線上にあることを示せ。
(3)$\triangle ABP$の面積が$\triangle CDP$の面積の$\frac{6}{5}$倍に等しいとき
$k$の値を求めよ。

【もとになる問題】
点$P$は$\triangle ABC$の内部にあり、
$6\ \overrightarrow{ AP }+5\ \overrightarrow{ BP }+3\ \overrightarrow{ CP }=\overrightarrow{ 0 }$
を満たしている。
(1)点$P$の位置を説明せよ。
(2)$\triangle PBC:\triangle PCA:\triangle PAB$を求めよ。
この動画を見る 

【数C】中高一貫校問題集4 464:平面上のベクトル:ベクトル方程式:ベクトル方程式の復習①

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #TK数学#TK数学問題集4#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABC(それぞれの位置ベクトルをa、b、cとする)。
この時、次の問いに答えよ。
(1)点Aから辺BCに下した垂線のベクトル方程式を求めよ。
この動画を見る 

杏林大学2023医学部第2問訂正動画

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-I, 0 , ー 2 ), B(-2, ー 2 , ー 3 ), C(1, 2 , ー 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。

2023杏林大学過去問
この動画を見る 
PAGE TOP