気付けば一瞬!!角の和 - 質問解決D.B.(データベース)

気付けば一瞬!!角の和

問題文全文(内容文):
$\angle a +\angle b +\angle c = ?$
*図は動画内参照
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle a +\angle b +\angle c = ?$
*図は動画内参照
投稿日:2023.12.31

<関連動画>

解けるようにできた方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$9^x+33^x=121^x$
この動画を見る 

数学オリンピック 整数問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1111^{2018}$を$11111$で割った余りを求めよ.
この動画を見る 

【数A】整数の性質:φ関数(φ(6)について) 問題文「1~nまでの自然数でnと互いに素な自然数の個数を求めよ」

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1~nまでの自然数でnと互いに素な自然数の個数を求めよ
この動画を見る 

福田の数学〜北里大学2022年医学部第1問(3)〜不定方程式の解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3) 等式 $30x-23y=1$を満たす正の整数の組(x, y) のうち、$x+y$ が最小となる
ものは[キ]である。
$A={n|n$ は 600 以下の正の整数であり、30の倍数である}
$B={n|n$ は 600 以下の正の整数であり、 n を 23 で割ると4余る}
とおく。このとき、 AUBに属する正の整数の総和は[ク]である。
また、m を正の整数とし、 $∨m^2 +120$ は整数であるとすると、mのとり得る値は[ヶ],[コ],[サ],[シ]である。

2022北里大学医学部過去問
この動画を見る 

【整数の性質】見終わったら整数の性質が得意になる動画【前編】(数学A)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1)
最大公約数が15で、最小公倍数が390えある。
2つの自然数をすべて求めよ

(2)
等式$5m+2n=25$を満たす自然数の組をすべて求めよ

(3)
$(m-4)n=12$を満たす自然数の組$(m.n)$をすべて求めよ。
この動画を見る 
PAGE TOP