【高校数学】気持ちいい計算問題!ずばずば消えて残るのはたったのこれだけ!? #Shorts - 質問解決D.B.(データベース)

【高校数学】気持ちいい計算問題!ずばずば消えて残るのはたったのこれだけ!? #Shorts

問題文全文(内容文):
$\displaystyle \frac{\sqrt{2}-\sqrt{1}}{\sqrt[4]{2}+\sqrt[4]{1}}$+$\displaystyle \frac{\sqrt{3}-\sqrt{2}}{\sqrt[4]{3}+\sqrt[4]{2}}$+・・・・・・+$\displaystyle \frac{\sqrt{20}-\sqrt{19}}{\sqrt[4]{20}+\sqrt[4]{19}}$
気持ちよい計算問題です。
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\displaystyle \frac{\sqrt{2}-\sqrt{1}}{\sqrt[4]{2}+\sqrt[4]{1}}$+$\displaystyle \frac{\sqrt{3}-\sqrt{2}}{\sqrt[4]{3}+\sqrt[4]{2}}$+・・・・・・+$\displaystyle \frac{\sqrt{20}-\sqrt{19}}{\sqrt[4]{20}+\sqrt[4]{19}}$
気持ちよい計算問題です。
投稿日:2023.04.03

<関連動画>

福田の数学〜慶應義塾大学2022年商学部第3問〜絶対値の付いた2次関数のグラフと直線の共有点と面積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$mを実数とし、関数$y=|x^2-5x+4|$のグラフをC、直線$y=mx$を$l$とする。
(1)グラフCと直線lの共有点の個数は
$\boxed{\ \ アイ\ \ } \lt m \lt \boxed{\ \ ウ\ \ }$のとき0個
$m=\boxed{\ \ エオ\ \ }$のとき1個
$m \lt \boxed{\ \ カキ\ \ },\ m=\boxed{\ \ ク\ \ }$,または$m \gt \boxed{\ \ ケ\ \ }$のとき2個
$m=\boxed{\ \ コ\ \ }$のとき3個
$\boxed{\ \ サ\ \ } \lt m \lt \boxed{\ \ シ\ \ }$のとき4個
以下、グラフCと直線lの共有点の個数が3個の場合を考え、
グラフCと直線lの共有点を、x座標が小さい順にP,Q,Rとする。

(2)3点P,Q,Rのx座標は、順に$\boxed{\ \ ス\ \ }-\sqrt{\boxed{\ \ セ\ \ }},\ \boxed{\ \ ソ\ \ },\ \boxed{\ \ タ\ \ }+\sqrt{\boxed{\ \ チ\ \ }}$である。

(3)グラフCと線分QRで囲まれた部分の面積は$\frac{-\ \boxed{\ \ ツ\ \ }+\boxed{\ \ テト\ \ }\sqrt{\boxed{\ \ ナ\ \ }}}{\boxed{\ \ ニ\ \ }}$である。

2022慶應義塾大学商学部過去問
この動画を見る 

日大(医)中学生もチャレンジして!

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P=a^4-25a^2-50a-25$であり、
$\vert P \vert$が素数となる整数aを求めよ。

日大(医)過去問
この動画を見る 

工夫して簡単に!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを簡単にせよ.
$\dfrac{\sqrt{21}+\sqrt{33}+\sqrt{77}+7}{\sqrt3+2\sqrt 7+\sqrt{11}}$
この動画を見る 

【数学I】データの分析を極限までまとめた動画【語呂合わせ】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学I】データの分析まとめ動画です
この動画を見る 

長崎大(医) 三角関数 方程式解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq x \leqq \pi$のとき、方程式$\cos 2x+4a \sin x +a-2=0$が異なる2つの解をもつための$a$の範囲

出典:1988年長崎大学医学部 過去問
この動画を見る 
PAGE TOP