福田のわかった数学〜高校1年生085〜確率(5)じゃんけんの確率(1) - 質問解決D.B.(データベース)

福田のわかった数学〜高校1年生085〜確率(5)じゃんけんの確率(1)

問題文全文(内容文):
数学$\textrm{A}$ 確率(4) じゃんけん(1)
n人でじゃんけんを1回する。 $(n \geqq 3)$
(1)r人が勝つ確率を求めよ。 $(0 \lt r \lt n)$
(2)あいこになる確率を求めよ。
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(4) じゃんけん(1)
n人でじゃんけんを1回する。 $(n \geqq 3)$
(1)r人が勝つ確率を求めよ。 $(0 \lt r \lt n)$
(2)あいこになる確率を求めよ。
投稿日:2021.12.08

<関連動画>

福田の一夜漬け数学〜確率漸化式(4)〜名古屋市立大学の問題に挑戦(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#名古屋市立大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $A,B$の2人がサイコロを使って次のようなルールでゲームを行う。
先に1を出した方を勝ちとして終了する。
$(\textrm{i})A$が1回目にサイコロを投げる
$(\textrm{ii})A$がサイコロを投げて1,2以外が出たときは、次の回はBがサイコロを投げる。
$(\textrm{iii})A$がサイコロを投げて1,2以外が出たときは、次の回はBがサイコロを投げる。
$(\textrm{iv})B$がサイコロを投げて1,2,3以外が出たときは、次の回はAがサイコロを投げる。
$(\textrm{v})B$がサイコロを投げて2か3が出たときは、次の回もBがサイコロを投げる。

(1)$k$回目にAがサイコロを投げる確率を$P_k,B$が投げる確率を$Q_k$とする。
$P_{k+1}$を$P_k$と$Q_k$を用いて表せ。

(2)k回目に$A$がサイコロを投げて勝つ確率を$R_k$とする。$R_k$を$k$を用いて表せ。
この動画を見る 

福田の一夜漬け数学〜順列・組合せ(2)〜一列に並べる(前編)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ A,B,C,D,E,F,Gを一列に並べる。
(1)AとBが両端にくるような並び方は何通りあるか。
(2)A,B,Cが隣り合うような並び方は何通りあるか。
(3)A,B,Cが隣り合わないような並び方は何通りあるか。
(4)A,B,Cがこの順に並ぶような並び方は何通りあるか。
(5)この順列を辞書順に並べたとき、CBFDAGEは何番目か。
この動画を見る 

福田の数学〜早稲田大学2021年理工学部第4問〜場合の数と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ $n,k$を$2$以上の自然数とする。$n$個の箱の中に$k$個の玉を無作為に入れ、各箱に入った玉の
個数を数える。その最大値と最小値の差がlとなる確率を$P_l(0 \leqq l \leqq k)$とする。
(1)$n=2,$ $k=3$のとき、$P_0,P_1,P_2,P_3$を求めよ。

(2)$n \geqq 2,$ $k=2$のとき、$P_0,P_1,P_2$を求めよ。

(3)$n \geqq 3,$ $k=3$のとき、$P_0,P_1,P_2,P_3$を求めよ。

2021早稲田大学理工学部過去問
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型文系第3問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ ある病原菌にはA型、B型の2つの型がある。A型とB型に同時に感染することはない。その病原菌に対して、感染しているかどうかを調べる検査Yがある。
検査結果は陽性か陰性のいずれかで、陽性であったときに病原菌の型までは判別できないものとする。検査Yで、A型の病原菌に感染しているのに陰性と判定される確率が10 %であり、B型の病原菌に感染しているのに陰性と判定される確率が20 %である。また、この病原菌に感染していないのに陽性と判定される確率が10 %である。
全体の1 %がA型に感染しており全体の4 %がB型に感染している集団から1人を選び検査Yを実施する。
(1)検査Yで陽性と判定される確率は$\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}$である。
(2)検査Yで陽性だった時に、A型に感染している確率は$\frac{\boxed{\ \ ハ\ \ }}{\boxed{\ \ ヒ\ \ }}$でありB型に感染している確率は$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}$である。
(3)1回目の検査Yに加えて、その直後に同じ検査Yをもう一度行う。ただし、1回目と2回目の検査結果は互いに独立であるとする。2回の検査結果が共に陽性であったときに、A型に感染している確率は$\frac{\boxed{\ \ ホ\ \ }}{\boxed{\ \ マ\ \ }}$でありB型に感染している確率は$\frac{\boxed{\ \ ミ\ \ }}{\boxed{\ \ ム\ \ }}$である。
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第3問〜場合の数、確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
[1]次の$\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ }$に当てはまるものを、下の⓪~⑤のうちから
一つずつ選べ。ただし、解答の順序は問わない。

正しい記述は$\boxed{\ \ ア\ \ }$と$\boxed{\ \ イ\ \ }$である。

⓪1枚のコインを投げる試行を5回繰り返すとき、少なくとも1回は表が
出る確率をpとすると、$p \gt 0.95$である。
①袋の中に赤球と白球が合わせて8個入っている。球を1個取り出し、色
を調べてから袋に戻す試行を行う。この試行を5回繰り返したところ赤球
が3回出た。したがって、1回の試行で赤球が出る確率は$\displaystyle\frac{3}{5}$である。
②箱の中に「い」と書かれたカードが1枚、「ろ」と書かれたカードが2枚、
「は」と書かれたカードが2枚の合計5枚のカードが入っている。同時に
2枚カードを取り出すとき、書かれた文字が異なる確率は$\displaystyle\frac{4}{5}$である。
③コインの面を見て「オモテ(表)または「ウラ(裏)」とだけ発言するロボット
が2体ある。ただし、どちらのロボットも出た面に対して正しく発言
する確率が0.9、正しく発言しない確率が0.1であり、これら2体は互いに
影響されるされることなく発言するものとする。いま、ある人が1枚のコインを
投げる。出た面を見た2体が、ともに「オモテ」と発言した時に、実際に
表が出ている確率をpとすると、$p \leqq 0.9$である。


[2]1枚のコインを最大で5回投げるゲームを行う。このゲームでは、1回
投げるごとに表が出たら持ち点に2点を加え、裏が出たら持ち点に-1点を
加える。はじめの持ち点は0点とし、ゲーム終了のルールを次のように定める。

・持ち点が再び0点になった場合は、その時点で終了する。
・持ち点が再び0点にならない場合は、コインを5回投げ終わった時点で
終了する。

(1)コインを2回投げ終わって持ち点が-2点である確率は$\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
また、コインを2回投げ終わって持ち点が1点である確率は
$\displaystyle\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$である。

(2)持ち点が再び0点になることが起こるのは、コインを$\boxed{\ \ キ\ \ }$回投げ
終わったときである。コインを$\boxed{\ \ キ\ \ }$回投げ終わって持ち点が0点になる
確率は$\displaystyle\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$である。

(3)ゲームが終了した時点で持ち点が4点である確率は$\displaystyle\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サシ\ \ }}$である。

(4)ゲームが終了した時点で持ち点が4点であるとき、コインを2回投げ
終わって持ち点が1点である条件付き確率は$\displaystyle\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$である。

2020センター試験過去問
この動画を見る 
PAGE TOP