東大 不定方程式不等式 - 質問解決D.B.(データベース)

東大 不定方程式不等式

問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a^2+b^2+c^2+d^2=n^2-6 \\
a+b+c+d \leqq n \\
a \geqq b \geqq c \geqq d
\end{array}
\right.
\end{eqnarray}$

0以上の整数$(a,b,c,d,n)$の組をすべて求めよ

出典:1986年東京大学 過去問
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a^2+b^2+c^2+d^2=n^2-6 \\
a+b+c+d \leqq n \\
a \geqq b \geqq c \geqq d
\end{array}
\right.
\end{eqnarray}$

0以上の整数$(a,b,c,d,n)$の組をすべて求めよ

出典:1986年東京大学 過去問
投稿日:2019.09.28

<関連動画>

横浜国立大(改)整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{3}\sqrt{n^2+48P}$が整数となる自然数n,素数Pの組をすべて求めよ.

横国(改)過去問
この動画を見る 

ナイスな整数問題 富山大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023富山大学
z整数,n自然数
$z^{3^{n}}-z^{3^{n-1}}$は$3^n$の倍数である。を次の場合で示せ
①n=1
②n=2
③すべてのn
この動画を見る 

【数学A/中間テスト対策】順列の応用『辞書式配列』

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$a,b,c,d,e$を1つずつ使ってできる文字列を$abcde$から$edcba$まで辞書式に並べるとき、$cbdea$は何番目にあるか求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題005〜一橋大学2015年文系数学第1問〜互いに素な自然数の個数

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを2以上の整数とする。n以下の正の整数のうち、nとの最大公約数が1と
なるものの個数をE(n)で表す。たとえば
$E(2)=1,E(3)=2,E(4)=2,...,E(10)=4, ...$
である。
(1)E(1024)を求めよ。
(2)E(2015)を求めよ。
(3)mを正の整数とし、pとqを異なる素数とする。$n=p^mq^mのとき\frac{E(n)}{n}\geqq\frac{1}{3}$
が成り立つことを示せ。

2015一橋大学文系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題019〜東京工業大学2016年度理系数学第4問〜整数に関する論証

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを2以上の自然数とする。
(1)nが素数または4のとき、$(n-1)!$はnで割り切れないことを示せ。
(2)nが素数でなくかつ4でもないとき、$(n-1)!$はnで割り切れることを示せ。

2016東京工業大学理系過去問
この動画を見る 
PAGE TOP