福田の数学〜立教大学2023年理学部第4問〜数学的帰納法とはさみうちの原理 - 質問解決D.B.(データベース)

福田の数学〜立教大学2023年理学部第4問〜数学的帰納法とはさみうちの原理

問題文全文(内容文):
$\Large\boxed{4}$ 正の数列$x_1$,$x_2$,$x_3$,...,$x_n$,... は以下を満たすとする。
$x_1$=8, $x_{n+1}$=$\sqrt{1+x_n}$ ($n$=1,2,3,...)
このとき、次の問いに答えよ。
(1)$x_2$,$x_3$,$x_4$をそれぞれ求めよ。
(2)すべての$n$≧1について($x_{n+1}$-$\alpha$)($x_{n+1}$+$\alpha$)=$x_n$-$\alpha$ となる定数$\alpha$で、
正であるものを求めよ。
(3)$\alpha$を(2)で求めたものとする。すべての$n$≧1について$x_n$>$\alpha$であることを$n$に関する数学的帰納法で示せ。
(4)極限値$\displaystyle\lim_{n \to \infty}x_n$を求めよ。
単元: #大学入試過去問(数学)#数列#数学的帰納法#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 正の数列$x_1$,$x_2$,$x_3$,...,$x_n$,... は以下を満たすとする。
$x_1$=8, $x_{n+1}$=$\sqrt{1+x_n}$ ($n$=1,2,3,...)
このとき、次の問いに答えよ。
(1)$x_2$,$x_3$,$x_4$をそれぞれ求めよ。
(2)すべての$n$≧1について($x_{n+1}$-$\alpha$)($x_{n+1}$+$\alpha$)=$x_n$-$\alpha$ となる定数$\alpha$で、
正であるものを求めよ。
(3)$\alpha$を(2)で求めたものとする。すべての$n$≧1について$x_n$>$\alpha$であることを$n$に関する数学的帰納法で示せ。
(4)極限値$\displaystyle\lim_{n \to \infty}x_n$を求めよ。
投稿日:2023.07.11

<関連動画>

福田の数学〜青山学院大学2023年理工学部第5問〜定積分で定義された数列と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $a_n$=$\displaystyle\frac{1}{n!}\int_1^e(\log x)^ndx$ ($n$=1,2,3,...)とおく。
(1)$a_1$を求めよ。
(2)不等式0≦$a_n$≦$\frac{e-1}{n!}$ が成り立つことを示せ。
(3)$n$≧2のとき、$a_n$=$\displaystyle\frac{e}{n!}$-$a_{n-1}$ であることを示せ。
(4)$\displaystyle\lim_{n \to \infty}\sum_{k=2}^n\frac{(-1)^k}{k!}$ を求めよ。
この動画を見る 

Σ

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k^2 = \frac{1}{6}n(n+1)(2n+1)$
この動画を見る 

福田のおもしろ数学127〜こんな漸化式解けるの?〜難しい漸化式の解き方

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_1$=$\displaystyle\frac{1}{2}$, $a_{n+1}$=$\sqrt{\displaystyle\frac{a_n+1}{2}}$ を満たす数列$\left\{a_n\right\}$の一般項$a_n$を求めよ。
この動画を見る 

【高校数学】 数B-80 いろいろな数列の和①

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の数列の初項から第$n$項までの和を求めよう.

①$3,5・2,7・2^2,9・2^3・・・$

②$x\neq 1$のとき,$1,3x,5x^2,7x^3,・・・$
この動画を見る 

和歌山大 ド・モアブルの定理 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#数学的帰納法#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
$a_1=b_1=1$
$a_{n+1}=a_n-b_n$
$b_{n+1}=a_n+b_n$
(1)$a_n+b_ni= (1+i)^n$を数学的帰納法で証明せよ。
(2)$a_N=2^{100}$となる自然数Nをすべて求めよ。
この動画を見る 
PAGE TOP