【数A】【図形の性質】図形の性質の基本1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数A】【図形の性質】図形の性質の基本1 ※問題文は概要欄

問題文全文(内容文):
外心と内心が一致する三角形は正三角形である。このことを証明せよ。

図の三角形ABCは角B=90度の直角三角形であり、3点D、E、Fは三角形ABCの外心・内心・重心のいずれかであるとする。このとき、三角形ABCの外心・内心・重心は3点D、E、Fのいずれであるか?

三角形ABCにおいて、AB=AC=3、BC=2である。三角形ABCの重心をG、内心をIとするとき、線分GIの長さを求めよ。

図において、点Hは三角形ABCの垂心である。角α、βを求めよ。
チャプター:

0:04 1
1:51 2
3:25 3
5:42 4

単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
外心と内心が一致する三角形は正三角形である。このことを証明せよ。

図の三角形ABCは角B=90度の直角三角形であり、3点D、E、Fは三角形ABCの外心・内心・重心のいずれかであるとする。このとき、三角形ABCの外心・内心・重心は3点D、E、Fのいずれであるか?

三角形ABCにおいて、AB=AC=3、BC=2である。三角形ABCの重心をG、内心をIとするとき、線分GIの長さを求めよ。

図において、点Hは三角形ABCの垂心である。角α、βを求めよ。
投稿日:2025.02.14

<関連動画>

ポケモンで数学を使おう!

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ポケモンでマヒ状態かつ混乱のとき攻撃できない確率はどれくらいですか?
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(1)〜2次方程式が整数を解にもつ条件

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$a$と$b$を正の整数とし、$f(x)=ax^2-bx+4$とおく。2次方程式$f(x)=0$は
異なる2つの実数解をもつとする。
$(\textrm{a})$2次方程式$f(x)=0$の2つの解がともに整数であるとき
$\left\{
\begin{array}{1}
a=1  \\
b=\boxed{\ \ ア\ \ }
\end{array}
\right.$  
または 
$\left\{
\begin{array}{1}
a=\boxed{\ \ イ\ \ }\\
b=\boxed{\ \ ウ\ \ }
\end{array}
\right.\\$
である。

$(\textrm{b})b=7$とする。2次方程式$f(x)=0$の2つの解のうち一方が整数であるとき、
$a=\boxed{\ \ エ\ \ }$であり、$f(x)=0$の2つの解は
$x=\boxed{\ \ エ\ \ },\ \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}$
である。

2021明治大学理工学部過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2024医学部第1問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{ 1 }$1から3までの番号をつけた赤玉3個と、1から3までの番号をつけた白玉3個が入った袋から、玉を1個ずつ3回取り出し、玉に書かれた番号を取り出した順に$a_1,a_2,a_3$とする。ただし、取り出した玉はもとに戻さないものとする。
取り出した3個の玉が、赤玉2個、白玉1個であったとき、
$a_1 \lt a_2 \lt a_3$となる条件付き確率は$\boxed{ア}$、
$a_1 \lt a_2$かつ$a_2 \gt a_3$となる条件付き確率は$\boxed{イ}$
である。
この動画を見る 

福田の数学〜北海道大学2023年理系第4問〜絶対値の和の最小となる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ nを2以上の自然数とする。1個のさいころをn回投げて出た目の数を順に$a_1$, $a_2$, ... ,$a_n$とし、
$K_n$=|1-$a_1$|+|$a_1$-$a_2$|+...+|$a_{n-1}$-$a_n$|+|$a_n$-6|
とおく。また$K_n$のとりうる値の最小値を$q_n$とする。
(1)$K_3$=5となる確率を求めよ。
(2)$q_n$を求めよ。また、$K_n$=$q_n$となるための$a_1$, $a_2$,...,$a_n$に関する必要十分条件を求めよ。
(3)nを4以上の自然数とする。$L_n$=$K_n$+|$a_4$-4|とおき、$L_n$のとりうる値の最小値を$r_n$とする。$L_n$=$r_n$となる確率$p_n$を求めよ。

2023北海道大学理系過去問
この動画を見る 

指数方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$5^{2x^2-1}-3・5^{(x+1)(x+2)}-2・5^{6(x+1)}=0$
この動画を見る 
PAGE TOP