問題文全文(内容文):
$\Large\boxed{1}$ (5)自然数$a$,$b$と素数$p$は等式
$a^4$-$4a^2b$+$4b^3$-$b^4$=$p^2$
を満たす。このとき、数の組($a$,$b$,$p$)を全て求めると($a$,$b$,$p$)$\boxed{\ \ シ\ \ }$である。
$\Large\boxed{1}$ (5)自然数$a$,$b$と素数$p$は等式
$a^4$-$4a^2b$+$4b^3$-$b^4$=$p^2$
を満たす。このとき、数の組($a$,$b$,$p$)を全て求めると($a$,$b$,$p$)$\boxed{\ \ シ\ \ }$である。
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)自然数$a$,$b$と素数$p$は等式
$a^4$-$4a^2b$+$4b^3$-$b^4$=$p^2$
を満たす。このとき、数の組($a$,$b$,$p$)を全て求めると($a$,$b$,$p$)$\boxed{\ \ シ\ \ }$である。
$\Large\boxed{1}$ (5)自然数$a$,$b$と素数$p$は等式
$a^4$-$4a^2b$+$4b^3$-$b^4$=$p^2$
を満たす。このとき、数の組($a$,$b$,$p$)を全て求めると($a$,$b$,$p$)$\boxed{\ \ シ\ \ }$である。
投稿日:2024.03.25