問題文全文(内容文):
$ x^3-x^2-x+2=0$の3つの解を$\alpha,\beta,\delta$としたとき,
$(\alpha^3+1)(\beta^3+1)(\delta^3+1)$の値を求めよ.
$ x^3-x^2-x+2=0$の3つの解を$\alpha,\beta,\delta$としたとき,
$(\alpha^3+1)(\beta^3+1)(\delta^3+1)$の値を求めよ.
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ x^3-x^2-x+2=0$の3つの解を$\alpha,\beta,\delta$としたとき,
$(\alpha^3+1)(\beta^3+1)(\delta^3+1)$の値を求めよ.
$ x^3-x^2-x+2=0$の3つの解を$\alpha,\beta,\delta$としたとき,
$(\alpha^3+1)(\beta^3+1)(\delta^3+1)$の値を求めよ.
投稿日:2022.08.14