入試予想問題:山形県立高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

入試予想問題:山形県立高等学校~全国入試問題解法

問題文全文(内容文):
入試予想問題 山形県立高等学校

・大問4題(総合問題)(小問集合)
・記述問題がポイント。 途中式,証明,作図。
・分量多い!!
【予想問題】
・$8a \div (-4a^2ℓ) \times aℓ^2$
・$4\sqrt{ 3 } \div \sqrt{ 2 }+\sqrt{ 54 }$
・$2x^2+4x-7=x^2-2$
・3枚の硬貨を同時に投げるとき、少なくとも1枚は表が 出る確率?
・$y=-\displaystyle \frac{12}{x}$・・・・①

(1)関数①について、 $x$の値を4倍にすると$y$の値は何倍になるか。
(2)①上の点$A$と$y$軸上の点$B$を通る直線②があり、2点$A,B$の$y$座標はそれぞれ2、-3である。
直線②の式を求めよ。
※図は動画内参照

線分$AB$を直径とする円○。 円○の周上に点$C$
$BC \lt AC$である$\triangle ABC$. $\triangle ACD$が
$AC=AD$の直角二等辺$\triangle $となる$D$.
辺$CD$と直径$AB$の交点$E$。
$D$から$AB$に垂線→交点$F$

(1) $\triangle ABC ∞ \triangle DAF$の証明。
(2) $AB=10cm, BC= 6cm, CA=8cm$ 線分施の長さを求めよ。
※図は動画内参照
単元: #数学(中学生)#山形県立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試予想問題 山形県立高等学校

・大問4題(総合問題)(小問集合)
・記述問題がポイント。 途中式,証明,作図。
・分量多い!!
【予想問題】
・$8a \div (-4a^2ℓ) \times aℓ^2$
・$4\sqrt{ 3 } \div \sqrt{ 2 }+\sqrt{ 54 }$
・$2x^2+4x-7=x^2-2$
・3枚の硬貨を同時に投げるとき、少なくとも1枚は表が 出る確率?
・$y=-\displaystyle \frac{12}{x}$・・・・①

(1)関数①について、 $x$の値を4倍にすると$y$の値は何倍になるか。
(2)①上の点$A$と$y$軸上の点$B$を通る直線②があり、2点$A,B$の$y$座標はそれぞれ2、-3である。
直線②の式を求めよ。
※図は動画内参照

線分$AB$を直径とする円○。 円○の周上に点$C$
$BC \lt AC$である$\triangle ABC$. $\triangle ACD$が
$AC=AD$の直角二等辺$\triangle $となる$D$.
辺$CD$と直径$AB$の交点$E$。
$D$から$AB$に垂線→交点$F$

(1) $\triangle ABC ∞ \triangle DAF$の証明。
(2) $AB=10cm, BC= 6cm, CA=8cm$ 線分施の長さを求めよ。
※図は動画内参照
投稿日:2021.03.02

<関連動画>

【中学数学】関数y=ax²:点A,Bは放物線y=x²上の点であり、そのx座標はそれぞれ 3,2である。△AOBの面積を求めよう。

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
点A,Bは放物線$y=x^2$上の点であり、そのx座標はそれぞれ 3,2である。△AOBの面積を求めよう。
この動画を見る 

動体視力と数学を鍛えるダイエット女子~全国入試問題解法 #Shorts

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\triangle ABC$において,$BC$の中点を$M$とするとき,
$\overline{AB^2}+\overline{AC^2}=2(\overline{AM^2}+\overline{BM^2})$
上式を座標を用いて証明せよ.

この動画を見る 

【数学】中3-9 因数分解④ もっと応用編

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
計算せよ。
①$(x-5)(x-1)-12$
②$(x+6)^2-3(x+6)-10$
③$(a-b)^2-c^2$
④$4x(6-y)-y+6$
⑤$(2x+1)^2-3(x+1)(x-1)$
⑥$(a-1)^2+6(a-1)+9$
この動画を見る 

一定であることの証明 慶應志木

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
PD+PE=一定であることを証明せよ。
*図は動画内参照

慶應義塾志木高等学校
この動画を見る 

佐賀県立高校入試2022年4⃣関数(5)

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2022年4⃣関数(5)
-----------------
点Bを通り$x$軸に平行な直線と、原点と点Aを通る直線との交点をDとする。
また、点Dを通り、傾き-1の直線を$m$とし、直線$l$と直線$m$との交点をEとする。
このとき、(ア)~(ウ)の各問いに答えなさい。

(ア)直線$m$の式を求めなさい。

(イ)△BDEの面積を求めなさい。

(ウ)△ACDの面積を$S$.△BDEの面積を$T$とするとき、$S:T$を最も簡単な整数の比で表しなさい。
この動画を見る 
PAGE TOP