これなに? - 質問解決D.B.(データベース)

これなに?

問題文全文(内容文):
オイラーの多面体定理解説動画です
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
オイラーの多面体定理解説動画です
投稿日:2024.03.26

<関連動画>

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 

福田の数学〜どれだけの情報を引き出せるかが勝負〜早稲田大学2023年商学部第2問〜球に内接する四面体の体積の最大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 中心O、半径1の球に内接する四面体で、その4頂点$T_1$, $T_2$, $T_3$, $T_4$が次の条件(i), (ii)を満たすものを考える。
(i)|$\overrightarrow{T_1T_2}$|=$\sqrt 3$
(ii)$k$($\overrightarrow{OT_1}$+$\overrightarrow{OT_2}$)+$\overrightarrow{OT_3}$+$\overrightarrow{OT_4}$=$\overrightarrow{0}$
ここで、$k$は2未満の正の実数とする。次の設問に答えよ。
(1)線分$T_3T_4$の中点をMとしたとき、$\triangleT_1T_2M$の面積を$k$を用いて表せ。
(2)各$k$に対し、上の条件を満たす四面体の体積の最大値を$V(k)$とする。$V(k)$が最大になるときの$k$の値を求めよ。
この動画を見る 

福田の数学〜早稲田大学2021年商学部第2問〜空間図形の共通部分

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 
図(※動画参照)のように、1辺の長さが$2$である立方体$\rm ABCD-EFGH$の内側に、正方形$\rm ABCD$に内接する円を底面にもつ高さ$2$の円柱$V$をとる。次の設問に答えよ。
(1)立方体の対角線$\rm AG$と円柱$V$の共通部分と得られる線分の長さを求めよ。
(2)$W$を三角柱$\rm ABC-DCG$と三角柱$\rm AEH-BFG$の共通部分とする。円柱$V$の側面と$W$の共通部分に含まれる線分の長さの最大値を求めよ。

2021早稲田大学商学部過去問
この動画を見る 

【高校数学】 数A-64 直線と平面③

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
正六面体の各面の対角線の交点を頂点とし,
隣り合う面どうしの頂点を結ぶことによって,
正六面体の中に正八面体ができる.
このとき、,次の場合について,正八面体の体積を求めよう.

①正六面体の1辺の長さが6

②正八面体の1辺の長さが6

図は動画内参照
この動画を見る 

福田の数学〜筑波大学2023年理系第3問〜球面に内接する四面体

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標空間内の原点Oを中心とする半径$r$の球面S上に4つの頂点がある四面体ABCDが
$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$+$\overrightarrow{OD}$=$\overrightarrow{0}$
を満たしているとする。また三角形ABCの重心をGとする。
(1)$\overrightarrow{OG}$を$\overrightarrow{OD}$を用いて表せ。
(2)$\overrightarrow{OA}$・$\overrightarrow{OB}$+$\overrightarrow{OB}$・$\overrightarrow{OC}$+$\overrightarrow{OC}$・$\overrightarrow{OA}$を$r$を用いて表せ。
(3)点Pが球面S上を動くとき、$\overrightarrow{PA}$・$\overrightarrow{PB}$+$\overrightarrow{PB}$・$\overrightarrow{PC}$+$\overrightarrow{PC}$・$\overrightarrow{PA}$の最大値を$r$を用いて表せ。さらに、最大値をとるときの点Pに対して、|$\overrightarrow{PG}$|を$r$を用いて表せ。

2023筑波大学理系過去問
この動画を見る 
PAGE TOP