福田の1.5倍速演習〜合格する重要問題083〜東北大学2018年度理系第1問〜直線の通過範囲 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題083〜東北大学2018年度理系第1問〜直線の通過範囲

問題文全文(内容文):
$\Large\boxed{1}$ xy平面上における2つの放物線C:y=$(x-a)^2+b$, D:y=$-x^2$を考える。
(1)CとDが異なる2点で交わり、その2交点のx座標の差が1となるように実数a,bが動くとき、Cの頂点(a, b)の軌跡を図示せよ。
(2)実数a, bが(1)の条件を満たしながら動くとき、CとDの2交点を結ぶ直線が通過する範囲を定め、図示せよ。

2018東北大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面上における2つの放物線C:y=$(x-a)^2+b$, D:y=$-x^2$を考える。
(1)CとDが異なる2点で交わり、その2交点のx座標の差が1となるように実数a,bが動くとき、Cの頂点(a, b)の軌跡を図示せよ。
(2)実数a, bが(1)の条件を満たしながら動くとき、CとDの2交点を結ぶ直線が通過する範囲を定め、図示せよ。

2018東北大学理系過去問
投稿日:2023.02.17

<関連動画>

【高校数学】 数B-53 空間における平面・直線の方程式①

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#点と直線#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(x+5)^2+(y-1)^2+(z-2)^2=13$が$xy$平面と交わってできる
図形の方程式を求めよう.

②中心が$(1,a,2)$,半径が6の球面が$zx$平面と交わってできる円の半径が
$3\sqrt3$であるとき,$a$の値を求めよう.

③方程式$x^2+y^2+z^2-2x+4y+6z=2$はどのような図形を
表しているか答えよう.
この動画を見る 

【わかりやすく】直線に対して対象の点の座標を求めよう(数学Ⅱ 図形と方程式)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
直線$y=x+3$に対して、点$A(-2,4)$と対称な点の座標を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜2点間の距離の公式(1)高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}\ $平面上に2点$A(3,5),B(-1,3)$がある。次の問いに答えよ。
(1)$AB$の距離を求めよ。
(2)2点$A,B$から等距離にある$x$軸上の点$P$の座標を求めよ。
(3)三角形$ABC$が正三角形となるように点$C$の座標を求めよ。
この動画を見る 

【高校数学】 数B-54 空間における平面・直線の方程式②

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#点と直線#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次のような直線の方程式を媒介変数$t$を用いて表そう.

①点$(3,2,1)$を通り,$\overrightarrow{a}=(0,2,1)$に平行な直線

②2点$(5,8,-7),(6,-9,3)$を通る直線

③点$(2,-1,3)$を通り,ベクトル$(5,2,-2)$に平行な直線と,
平面$3x-2y=-4$との交点の座標を求めよう.
この動画を見る 

福田の数学〜神戸大学2022年理系第4問〜双曲線が直線から切り取る弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#点と直線#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とし、双曲線$\frac{x^2}{4}-\frac{y^2}{4}=1$と直線$y=\sqrt ax+\sqrt a$が異なる2点P,Q
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。
(1)aの取りうる値の範囲を求めよ。
(2)s,tの値をaを用いて表せ。
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。
(4)tの値をsを用いて表せ。

2022神戸大学理系過去問
この動画を見る 
PAGE TOP