【数Ⅰ】【2次関数】2次関数の最大最小場合分け5 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【2次関数】2次関数の最大最小場合分け5 ※問題文は概要欄

問題文全文(内容文):
$k$は定数とする。2次関数$y=x^2+2kx+k$の最小値を$m$とする。
(1) $m$は$k$の関数である。$m$を$k$の式で表せ。
(2) $k$の関数$m$の最大値とそのときの$k$の値を求めよ。
チャプター:

0:00 (1)導入
1:45 グラフの概形
2:40 (2)導入
3:00 xとyに置き換えて考えてみる
3:50 mとkに戻す

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$k$は定数とする。2次関数$y=x^2+2kx+k$の最小値を$m$とする。
(1) $m$は$k$の関数である。$m$を$k$の式で表せ。
(2) $k$の関数$m$の最大値とそのときの$k$の値を求めよ。
投稿日:2024.12.01

<関連動画>

空間座標の導入!!

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
点$P(2,3,4)$に対して
(1)$xy$平面に関して対称な点の座標は( , , )
(2)$yz$平面に関して対称な点の座標は( , , )
(3)$zx$平面に関して対称な点の座標は( , , )
(4)$x$軸平面に関して対称な点の座標は( , , )
(5)$y$軸平面に関して対称な点の座標は( , , )
(6)$z$軸平面に関して対称な点の座標は( , , )
(7)原点平面に関して対称な点の座標は( , , )
この動画を見る 

指数・対数連立不等式 京都府立大

アイキャッチ画像
単元: #2次関数#2次方程式と2次不等式#2次関数とグラフ#指数関数と対数関数#指数関数#対数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a>0,a \neq 1$とする.
$\begin{eqnarray}
\left\{
\begin{array}{l}
a^{2x-4}-1<a^{x+1}-a^{x-5} \\
2\log_a(x-2)\geqq \log_a(x-2)+\log_a5
\end{array}
\right.
\end{eqnarray}$
連立不等式を解け.
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(3)〜三角関数の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}} (3)-\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$
のとき、次の関数が最大値をとるときのxの値を求めよ。
$y=\sin x+\cos^2x$

2021中央大経済学部過去問
この動画を見る 

対偶法と背理法の証明の全パターン①【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$mn$が偶数ならば、$m,n$のうち少なくとも1つは偶数であることを示せ。
ただし、$m,n$は整数とする。

(2)
$\sqrt{ 2 }$が無理数であることを示せ。
この動画を見る 

東京医科歯科大 整式の大小比較

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は異なる整数
大小比較せよ

(1)
$a^3+b^3,a^2b+ab^2$

(2)
$(a+b+c)(a^2+b^2+c^2)$
$(a+b+c)(ab+bc+ca)$
$3(a^3+b^3+c^3),9abc$


出典:2010年東京医科歯科大学 過去問
この動画を見る 
PAGE TOP