【数C】【空間ベクトル】(1) 2点A(5,-2,-3)、B(8,0,-4)を通る直線に垂線OHを下ろす。点Hの座標と線分OHの長さを求めよ。他1問 - 質問解決D.B.(データベース)

【数C】【空間ベクトル】(1) 2点A(5,-2,-3)、B(8,0,-4)を通る直線に垂線OHを下ろす。点Hの座標と線分OHの長さを求めよ。他1問

問題文全文(内容文):
(1) 2点A(5,-2,-3)、B(8,0,-4)を通る直線に、原点Oから垂線OHを下ろす。このとき、点Hの座標と線分OHの長さを求めよ。
(2) 2点A(0.-2,-3)、B(8,4,7)を通る直線に、点P(3,-1,4)から垂線PHを下ろす。このとき、点Hの座標と線分PHの長さを求めよ
チャプター:

0:00 問題概要
0:31 (1)解説 方針に沿って立式
0:55 O始点に揃えていく
2:23 位置ベクトルから座標への変換
2:45 (2)解説
3:36 ベクトルPHを出してからHの座標決定

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) 2点A(5,-2,-3)、B(8,0,-4)を通る直線に、原点Oから垂線OHを下ろす。このとき、点Hの座標と線分OHの長さを求めよ。
(2) 2点A(0.-2,-3)、B(8,4,7)を通る直線に、点P(3,-1,4)から垂線PHを下ろす。このとき、点Hの座標と線分PHの長さを求めよ
投稿日:2025.10.30

<関連動画>

福田の一夜漬け数学〜折れ線の最小(2)〜受験編

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$A(1,2,4)$を通り、ベクトル$\ \overrightarrow{ n }=(-3,1,2)$に垂直な平面を$\alpha$とする。
平面$\alpha$に関して同じ側に2点$\ P(-2,1,7),Q(1,3,7)$がある。
平面$\alpha$上の点で、$PS+QS$を最小にする点$S$の座標と最小値を求めよ。
この動画を見る 

【数C】【空間ベクトル】四面体OABCにおいて、△ABCの重心をG、辺OAの中点をMとし、OGと△MBCの交点をHとすると、OH:OG=3:4であることを示せ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、△ABCの重心をG、辺OAの中点をMとし、OGと△MBCの交点をHとすると、OH:OG=3:4であることを示せ
この動画を見る 

福田の数学〜立方体の平面による切断を考えよう〜慶應義塾大学2023年経済学部第5問〜立方体の平面による切断と体積の最大

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
xyz空間における 8 点 O ( 0 , 0 , 0 ), A ( 1 , 0 , 0 ), B ( 1 , 1 , 0 ), C( 0 , 1 , 0 ), D ( 0 , 0 , 1 ),E ( 1 , 0 , 1 ), F( 1 , 1 , 1 ), G(0 , 1 , 1 ) を頂点とする立方体 OABC-DEFG を考える。また、pと q はp> 1 ,q> 1 を満たす実数とし、 3 点 P, Q, R を P( p, 0 , 0 ), Q(0 , q , 0 ),R( 0 , 0 , $\dfrac{3}{2}$ )とする。
(1)a,bを実数とし、べクトル$\vec{n}$=( a , b , 1 )は 2 つのべクトル $\overrightarrow{ PQ },\overrightarrow{ PR }$の両方に垂直であるとする。a,bをp,qを用いて表せ。
以下では 3 点 P, Q, R を通る平面を$\alpha$とし、点 F を通り平面を$\alpha$とし、点Fを通り平面$\alpha$に垂直な直線をlとする。また、xy平面と直線lの交点のx座標が$\dfrac{2}{3}$であるとし、点 B は線分 PQ 上にあるとする。
(2)pおよびqの値を求めよ。
( 3 )平面と線分 EF の交点 M の座標、および平面と直線 FG の交点 N の座標を求めよ。
( 4 )平面で立方体 OABC - DEFG を 2 つの多面体に切り分けたとき、点 F を含む多面体の体積Vを求めよ。

2023慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(1)〜空間図形の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)右図(※動画参照)のような正六面体$ABCD-EFGH$において、辺$FG$の中点を$M$とする。
このとき、三角形$CHM$の重心を$X$とすると、

$\overrightarrow{ AX }=\boxed{\ \ ア\ \ }\ \overrightarrow{ AB }+\boxed{\ \ イ\ \ }\ \overrightarrow{ AD }+\boxed{\ \ ウ\ \ }\ \overrightarrow{ AE }$
と表せ、直線$AG$と三角形$CHM$の交点を$Y$とすると

$\overrightarrow{ AY }=\boxed{\ \ エ\ \ }\ \overrightarrow{ AB }+\boxed{\ \ オ\ \ }\ \overrightarrow{ AD }+\boxed{\ \ カ\ \ }\ \overrightarrow{ AE }$
と表せる。

解答群:$⓪\ 1 \ \ \ \ ①\ \frac{1}{2} \ \ \ \ ②\ \frac{1}{3} \ \ \ \ ③\ \frac{2}{3} \ \ \ \ ④\ \frac{1}{4} $
$⑤\ \frac{3}{4} \ \ \ \ ⑥\ \frac{1}{5} \ \ \ \ ⑦\ \frac{4}{5} \ \ \ \ ⑧\ \frac{1}{6} \ \ \ \ ⑨\ \frac{5}{6}$

2022明治大学全統過去問
この動画を見る 

【数C】【空間ベクトル】a=(0,1,2)、b=(2,4,6)とする。x=a+tb(tは実数)について、|x|の最小値を求めよ。また、その時のxを成分表示せよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,b,xをベクトルとする。
a=(0,1,2)、b=(2,4,6)とする。
x=a+tb(tは実数)について、|x|の最小値を求めよ。また、その時のxを成分表示せよ。
この動画を見る 
PAGE TOP