鹿児島大(医他)数列の和 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

鹿児島大(医他)数列の和 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
$\sum_{k=1}^{n} \displaystyle \frac{2k-1}{2^k}$

出典:鹿児島大学 過去問
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sum_{k=1}^{n} \displaystyle \frac{2k-1}{2^k}$

出典:鹿児島大学 過去問
投稿日:2019.01.17

<関連動画>

【高校数学】 数B-69 等比数列とその和⑤

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の等比数列の初項と公比を求めよう.

①初項から第3項までの和が3,初項から第6項までの和が27

②第3項が4,初項から第3項までの和が7
この動画を見る 

北海道大 等比複素数列 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
北海道大学過去問題
数列{$Z_n$}は初項48、公比$\frac{1}{4}(\sqrt{6}+\sqrt{2}i)$の等比複素数列である。
この数列の項のうち実数のみの項を並べた数列を{$a_n$}
(1)$Z_4$
(2)$a_3$
(3)$\displaystyle\sum_{n=1}^\infty a_n$
この動画を見る 

【数B】【数列】自然数の式の証明1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) 整数$n$を$2$で割った余りで分類することで、$3n^2-n$が$2$の倍数であることを証明せよ。
(2) 整数$n$を$3$で割った余りで分類することで、 $n^3-n+9$が$3$の倍数であることを証明せよ。
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(4)〜合成関数と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(4)数列$\left\{a_n\right\},\left\{b_n\right\}$(ただし$a_1\neq 0$かつ$a_1\neq 1$)に対して1次関数
$f_n(x)=a_nx+b_n (n=1,2,\ldots)$
を定める。また、$\alpha=a_1, \beta=b_1$とおく。すべての自然数nに対して
$(f_n◦f_1)(x)=f_{n+1}(x)$
が成り立つとき、数列$\left\{a_n\right\},\left\{b_n\right\}$の一般項を$\alpha$と$\beta$の式で表すと
$a_n=\boxed{\ \ ク\ \ }, b_n=\boxed{\ \ ケ\ \ }$
となる。

2022慶應義塾大学医学部過去問
この動画を見る 

2025年度入試に出るかも?~答えが2025になる計算問題~

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2025年度入試に出るかも?
「答えが2025になる計算問題」について解説しています。
※問題文は動画内参照
この動画を見る 
PAGE TOP