上智大 連立漸化式 - 質問解決D.B.(データベース)

上智大 連立漸化式

問題文全文(内容文):
上智大学過去問題
$a_1 =0,b_1=6$
$a_{n+1}=\frac{a_n+b_n}{2}$,$b_{n+1}=a_n$
点Pの$(a_n,b_n)$はある直線上にある。その式は?
$n \to \infty$のときの$P_n$
単元: #大学入試過去問(数学)#漸化式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
上智大学過去問題
$a_1 =0,b_1=6$
$a_{n+1}=\frac{a_n+b_n}{2}$,$b_{n+1}=a_n$
点Pの$(a_n,b_n)$はある直線上にある。その式は?
$n \to \infty$のときの$P_n$
投稿日:2023.06.20

<関連動画>

数学「大学入試良問集」【17−4 漸化式と等比数列・極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#東京農工大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次のように定義された数列を$\{a_n\}$とする。
$a_1=r^2,a_2=1,2a_n=(r+3)a_{n-1}-(r+1)a_{n-2}(n \geqq 3)$
このとき、次の各問いに答えよ。
(1)$b_n=a_{n+1}-a_n$とおくとき、$b_n$を$n$と$r$を用いて表せ。
(2)$a_n$を求めよ。
(3)数列$\{a_n\}$が収束するような$r$の範囲およびそのときの極限値を求めよ。
この動画を見る 

漸化式 香川大(医)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-4x+1=0$の解を$\alpha,\beta(\alpha \gt \beta)$とする.

(1)$\alpha^n+\beta^m$は偶数であることを示せ.
(2)$[\alpha^n]$は奇数であることを示せ.

2018香川(医)過去問
この動画を見る 

佐賀大 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$a_1=1,a_{n+1}-2a_n-2n-3$

1987佐賀大過去問
この動画を見る 

【高校数学】隣接3項間の漸化式~解き方を覚えよう~ 3-19【数学B】

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
問題1 数列$\{an\}$の一般項を求めよ。

$a_{1} = 0, a_{2} = 1 ,a_{n+2}-5a_{n+1}+6a_n=0$

問題2 次のように定義される$\{an\}$の一般項$a_n$を求めよ。

$a_1=1,a_2=2,a_{n+2}-2a_{n+1}-15a_n=0$
この動画を見る 

香川大(医) 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-4x+1=0$の2つの解を$\alpha,\beta(\alpha \gt \beta)$とする

(1)
$\alpha^n + \beta^n$は偶数であることを示せ($n$自然数)

(2)
$[ \alpha^n ]$は奇数であることを示せ
$[ \alpha^n ]$は$\alpha^n$をこえない最大の整数

出典:2018年香川大学 医学部 過去問
この動画を見る 
PAGE TOP