数学「大学入試良問集」【16−1 複素数平面と解と係数の関係】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【16−1 複素数平面と解と係数の関係】を宇宙一わかりやすく

問題文全文(内容文):
$c$を実数とする。$x$についての2次方程式
$x^2+(3-2c)x+c^2+5=0$が2つの解$\alpha,\ \beta$を持つとする。
複素平面上の3点$\alpha,\beta,c^2$が三角形の3頂点になり、その三角形の重心は$0$であるという。
$c$を求めよ。
単元: #複素数平面#複素数平面#英語(高校生)#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#数学(高校生)#数C#京都大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$c$を実数とする。$x$についての2次方程式
$x^2+(3-2c)x+c^2+5=0$が2つの解$\alpha,\ \beta$を持つとする。
複素平面上の3点$\alpha,\beta,c^2$が三角形の3頂点になり、その三角形の重心は$0$であるという。
$c$を求めよ。
投稿日:2021.11.11

<関連動画>

名古屋大学 z^6=64 の6つの解を求めよ 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
'05名古屋大学過去問題
$Z^6 = 64$
この動画を見る 

福田の数学〜上智大学2021年理工学部第3問〜複素数平面と図形

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ $i$を虚数単位とする。複素数zの絶対値を$|z|$と表す。
$w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5}$ とし、$\alpha=w+w^4$ とする。

(1)$\alpha^2=\boxed{\ \ お\ \ }$である。これより、$\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}$である。
(2)複素数平面上の2点$\frac{i}{2}$,-1間の距離は$\boxed{\ \ か\ \ }$である。
(3)複素数平面上の2点$w^2,$ -1間の距離は$\boxed{\ \ き\ \ }$である。
(4)$\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta)$ (ただし、$r \gt 0,\ 0 \leqq \theta \lt 2\pi$)
とおくとき、$r=\boxed{\ \ く\ \ }$であり、$\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi$である。
(5)複素数平面上で、-1を中心都市$w^2$を通る円上をzが動くとする。
$x=\frac{1}{z}$とするとき、$x$は$|1+x|=\boxed{\ \ け\ \ }|x|$を満たし、$\boxed{\ \ こ\ \ }$を
中心とする半径$\boxed{\ \ さ\ \ }$の円を描く。

$\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }$の選択肢
$(\textrm{a})1  (\textrm{b})2  (\textrm{c})\alpha  (\textrm{d})2\alpha$
$(\textrm{e})\frac{\alpha}{2}+1  (\textrm{f})\frac{\alpha}{2}-1  (\textrm{g})-\frac{\alpha}{2}+1  (\textrm{h})-\frac{\alpha}{2}-1$
$(\textrm{i})\alpha+1  (\textrm{j})\alpha-1  (\textrm{k})-\alpha+1  (\textrm{l})-\alpha-1$
$(\textrm{m})\alpha+\frac{1}{2}  (\textrm{n})\alpha-\frac{1}{2}  (\textrm{o})-\alpha+\frac{1}{2}  (\textrm{p})-\alpha-\frac{1}{2}$

2021上智大学理工学部過去問
この動画を見る 

基本問題

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x+\dfrac{1}{x}-\sqrt2$のとき,
x^{2023}+\dfrac{1}{x^{2023}}$の値を求めよ.
この動画を見る 

数学「大学入試良問集」【16−2 複素数平面と三角形の形との関係】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
複素数平面上に三角形$ABC$があり、その頂点$A,B,C$を表す複素数をそれぞれ$z_1,z_2,z_3$とする。
複素数$\omega$に対して、$z_1=\omega z_3,z_2=\omega z_1,z_3=\omega z_2$が成り立つとき、次の各問いに答えよ。
(1)$1+\omega+\omega^2$の値を求めよ。
(2)三角形$ABC$はどんな形の三角形か。
(3)$z=z_1+2z_2+3z_3$の表す点を$D$とすると、三角形$OBD$はどんな形の三角形か。ただし、$O$は原点である。
この動画を見る 

慶應(医)虚数係数の二次方程式の2解の距離

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4Z^2+4Z-\sqrt3 i=0$の2つの解の複素数平面上の距離を求めよ.

慶應(医)過去問
この動画を見る 
PAGE TOP