大学入試問題#419「複素数の基本的な性質を網羅!」 東海大学医学部2017 #複素数 - 質問解決D.B.(データベース)

大学入試問題#419「複素数の基本的な性質を網羅!」 東海大学医学部2017 #複素数

問題文全文(内容文):
$\alpha=\displaystyle \frac{2+\sqrt{ 5 }i}{3}$のとき
$27(1+\displaystyle \frac{1}{\alpha}+\displaystyle \frac{1}{\alpha^2}+\displaystyle \frac{1}{\alpha^3})$の値を求めよ

出典:2017年東海大学医学部 入試問題
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東海大学
指導講師: ますただ
問題文全文(内容文):
$\alpha=\displaystyle \frac{2+\sqrt{ 5 }i}{3}$のとき
$27(1+\displaystyle \frac{1}{\alpha}+\displaystyle \frac{1}{\alpha^2}+\displaystyle \frac{1}{\alpha^3})$の値を求めよ

出典:2017年東海大学医学部 入試問題
投稿日:2023.01.11

<関連動画>

【高校数学】数Ⅲ-2 複素数平面・共役な複素数②

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
複素数$z$が,$2z-5\overline{z}=-9+14i$を満たすとき,
共役複素数の性質を利用して$z$を求めよ.
この動画を見る 

【数ⅢC】複素数平面の基本⑤複素数の積・商の考え方

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を極形式で表せ
$\cos\dfrac{2}{3}\pi-i\sin\dfrac{2}{3}\pi$
この動画を見る 

2023藤田医科大 1の7乗根の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\piのとき
Z^7=\Box
Z^6+Z^5+Z^4+Z^3+Z^2+Z=\Box
(1-Z)(1-Z^2)(1-Z^3)×(1-Z^4)(1-Z^5)(1-Z^6)=\Box
\Boxを答えよ.$
この動画を見る 

山口大 1の十乗根の問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&2023山口大\\
&&2Z^4+(1-\sqrt{5})Z^2+2=0\\
&&①Z^{10}=1 を示せ\\
&&②Z+Z^3+Z^5+Z^7+Z^9の値\\
&&③\cos\frac{\pi}{5}\cos\frac{2\pi}{5} = \frac{1}{4}を示せ

\end{eqnarray}
$
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第4問PART1〜円に内接する円の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#複素数平面#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#微分とその応用#複素数平面#図形への応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面において原点Oを中心とする半径1の円を$C_1$とし、$C_1$の内部にある第1象限の点Pの極座標を(r, θ)とする。さらに点Pを中心とする円$C_2$が$C_1$上の点Qにおいて$C_1$に内接し、x軸上の点Rにおいてx軸に接しているとする。
また、極座標が(1, π)である$C_1$上の点をAとし、直線AQのy切片をtとする。
(1)rをθの式で表すとr=$\boxed{\ \ あ\ \ }$となり、tの式で表すとr=$\boxed{\ \ い\ \ }$となる。
(2)円$C_2$と同じ半径をもち、x軸に関して円$C_2$と対称な位置にある円$C'_2$の中心P'とする。三角形POP'の面積はθ=$\boxed{\ \ う\ \ }$のとき最大値$\boxed{\ \ え\ \ }$をとる。θ=$\boxed{\ \ う\ \ }$は条件t=$\boxed{\ \ お\ \ }$と同値である。
(3)円$C_1$に内接し、円$C_2$と$C'_2$の両方に外接する円のうち大きい方を$C_3$とする。円$C_3$の半径bをtの式で表すとb=$\boxed{\ \ か\ \ }$となる。
(4)3つの円$C_2$, $C'_2$, $C_3$の周の長さの和はθ=$\boxed{\ \ き\ \ }$の最大値$\boxed{\ \ く\ \ }$をとる。

2023慶應義塾大学看護医療学部過去問
この動画を見る 
PAGE TOP