05兵庫県教員採用試験(数学:1番 背理法) - 質問解決D.B.(データベース)

05兵庫県教員採用試験(数学:1番 背理法)

問題文全文(内容文):
$\boxed{1}$
$\log_2 3$が無理数であることを示せ.
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$\log_2 3$が無理数であることを示せ.
投稿日:2021.03.24

<関連動画>

放物線と比  大阪桐蔭

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数Ⅱ#2次関数#三角関数#三角関数とグラフ#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
Rの座標は?
*図は動画内参照

大阪桐蔭高等学校
この動画を見る 

福田の1.5倍速演習〜合格する重要問題084〜東北大学2018年度理系第4問〜三角形の内接円と外接円の半径の関係

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 三角形ABCの内接円の半径をr, 外接円の半径をRとし、h=$\frac{r}{R}$とする。
また、$\angle$A=2α, $\angle$B=2β, $\angle$C=2γ とおく。
(1)h=4$\sin\alpha\sin\beta\sin\gamma$となることを示せ。
(2)三角形ABCが直角三角形のときh≦$\sqrt 2-1$が成り立つことを示せ。
また、等号が成り立つのはどのような場合か。
(3)一般の三角形ABCに対してh≦$\frac{1}{2}$が成り立つことを示せ。また等号が成り立つのはどのような場合か。

2018東北大学理系過去問
この動画を見る 

福田のおもしろ数学384〜整数部分と小数部分を含む連立方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[a]はaの整数部分、{a}はaの小数部分
連立方程式
x+[y]+{z}=2025.1… ①
[x]+{y}+z=2025.2… ②
{x}+y+[z]=2025.3… ③

を解いて下さい。
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第1問〜絶対値の付いた2次関数の最小値(難)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$0 \leqq a \leqq b \leqq 1$を満たすa,bに対し、関数
$f(x)=|x(x-1)|+|(x-a)(x-b)|$
を考える。xが実数の範囲を動くとき、$f(x)$は最小値mをもつとする。
(1)$x \lt 0$および$x \gt 1$では$f(x) \gt m$となることを示せ。
(2)$m=f(0)$または$m=f(1)$であることを示せ。
(3)$a,b$が$0 \leqq a \leqq b \leqq 1$を満たして動くとき、mの最大値を求めよ。

2022北海道大学理系過去問
この動画を見る 

福田のおもしろ数学085〜不等式を満たす自然数の組合せ

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a$<$b$<$c$を満たす正の整数の組($a$,$b$,$c$)であって、
$a^2$-$20005a$>$b^2$-$20005b$>$c^2$-$20005c$
が成り立つものはいくつあるか。
この動画を見る 
PAGE TOP