【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第2問解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第2問解説

問題文全文(内容文):
aを正の定数とする。区間$0\leqq x\leqq 1$で定義された関数$ y = x^2 ‐ ax + a$ について、次の問いに答えよ。
(1) この区間におけるyの最大値と最小値をaを用いて表せ。
(2) yの最小値が$\dfrac{7}{16}$となるようなaに対し、yの最大値を求めよ。
チャプター:

0:00 オープニング
0:16 (1)の解き方
3:02 (2)の解き方
4:21 まとめ

単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の定数とする。区間$0\leqq x\leqq 1$で定義された関数$ y = x^2 ‐ ax + a$ について、次の問いに答えよ。
(1) この区間におけるyの最大値と最小値をaを用いて表せ。
(2) yの最小値が$\dfrac{7}{16}$となるようなaに対し、yの最大値を求めよ。
投稿日:2021.12.31

<関連動画>

【数Ⅰ】【数と式】平方根の式の値 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x=\dfrac{\sqrt{ 5 }+2}{\sqrt{ 5 }-2}$ , $y=\dfrac{\sqrt{ 5 }-2}{\sqrt{ 5 }+2}$

のとき, 次の式の値を求めよ。

(1) $x+y$ (2) $xy$ (3) $x^2y+xy^2 $
(4) $x^2+y^2$ (5) $x^3+y^3$



$x=\sqrt{ 2 }-1$
のとき, 次の式の値を求めよ。
(1) $x+\dfrac{1}{x}$ (2) $x^2+\dfrac{1}{x^2}$ (3) $x^3+\dfrac{1}{x^3}$
(4) $x^4+\dfrac{1}{x^4}$ (5) $x^5+\dfrac{1}{x^5}$
この動画を見る 

3乗根を外すだけ

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
3乗根を外せ.
$\sqrt[3]{\dfrac{10-7\sqrt2}{10+7\sqrt2}}$
この動画を見る 

【高校数学】数Ⅰ-12 絶対値

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$ a \gt 0 $のとき$| a |$=①____、
$a=0$のとき$| a |$=②____
$a \lt 0$のとき$| a |$=③____となる。

◎次の値をもとめよう。
④$| 7 |$=
⑤$| -3 |$=
⑥$| -0.2 |$=
⑦$| -4 |-| 3 |$=
⑧$| \sqrt{ 5 }-3 |$=

◎aが次の値をとるとき、$| a+4 |+| a-3 |$の値は?
⑨$5$
⑩$\sqrt{ 6 }$
この動画を見る 

座標平面上の三角形 日大山形 (山形)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△PRQ=?
*図は動画内参照

日本大学山形高等学校
この動画を見る 

総合問題2020

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(5+\sqrt{ 26 })^{2020}$の1の位の数を求めよ
この動画を見る 
PAGE TOP