数学コンテスト(米国、加奈陀) 2005年 #定積分 #King_property - 質問解決D.B.(データベース)

数学コンテスト(米国、加奈陀) 2005年 #定積分 #King_property

問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{log(1+x)}{1+x^2}dx$

出典:数学コンテスト
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{log(1+x)}{1+x^2}dx$

出典:数学コンテスト
投稿日:2022.09.17

<関連動画>

福田の1.5倍速演習〜合格する重要問題073〜東京理科大学2019年度理工学部第3問〜定積分と不等式そして極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 関数f(x)を$f(x)=\displaystyle\int_0^x\frac{dt}{1+t^2}$と定める。
(1)t=$\tan\theta$とおく置換積分により$f(1)=\displaystyle\int_0^1\frac{dt}{1+t^2}$の値を求めよ。
(2)0 $\lt$ $\alpha$ $\lt$ 1とし、mを自然数とするとき、以下の不等式が成り立つことを示せ。
$f(a)\displaystyle\int_a^1x^mdx$ $\lt$ $\displaystyle\int_a^1f(x)x^mdx$ $\lt$ $\displaystyle\int_0^1f(x)x^mdx$ $\lt$ $f(1)\displaystyle\int_0^1x^mdx$
(3)$\displaystyle\lim_{m \to \infty}\left(1-\frac{1}{\sqrt m}\right)^m$を求めよ。必要ならばs >1のとき$\displaystyle\left(1-\frac{1}{s}\right)^s \lt \frac{1}{2}$となることを用いてよい。
(4)$\displaystyle\lim_{m \to \infty}m\int_{1-\frac{1}{\sqrt m}}^1f(x)x^mdx$を求めよ。

2019東京理科大学理工学部過去問
この動画を見る 

#明治大学2023#定積分_24#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \sin^2 2x dx$

出典:2023年明治大学
この動画を見る 

大学入試問題#336 横浜国立大学2013 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int e^{-x}\sin^2x\ dx$

出典:2013年横浜国立大学 入試問題
この動画を見る 

大学入試問題#803「マジで気合い!」 #大阪市立大学(2000) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{(1+x^2)^4} dx$

出典:2000年大阪市立大学
この動画を見る 

大学入試問題#153 東京医科大学(2017) 微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科大学#東京医科大学
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$f(x)=\displaystyle \int_{1}^{x}\displaystyle \frac{x+4t}{\sqrt{ 3x^4+t^4 }}\ dt$において$f'(x)$を求めよ。

出典:2017年東京医科大学 入試問題
この動画を見る 
PAGE TOP