【For you 動画-15】 数B-漸化式 - 質問解決D.B.(データベース)

【For you 動画-15】  数B-漸化式

問題文全文(内容文):
一般項anを出す公式
【等差】an=①____
【等比】an=②____
【階差】(an+1an=bn)
③____のとき
an=④____________

◎グループ分けをしよう!

Aan+1=2an
Ban+1an=3n
Can+1+5an=0
Dan+1=an+7
Ean+13an=4
Fan+1an=2n+1

等差数列は⑤____,等比数列は⑥____
階差数列は⑦____, 変形が必要なのは⑧____
⑧を変形すると⑨________ になる。
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
一般項anを出す公式
【等差】an=①____
【等比】an=②____
【階差】(an+1an=bn)
③____のとき
an=④____________

◎グループ分けをしよう!

Aan+1=2an
Ban+1an=3n
Can+1+5an=0
Dan+1=an+7
Ean+13an=4
Fan+1an=2n+1

等差数列は⑤____,等比数列は⑥____
階差数列は⑦____, 変形が必要なのは⑧____
⑧を変形すると⑨________ になる。
投稿日:2013.05.27

<関連動画>

超不人気!確率漸化式だよ

アイキャッチ画像
単元: #数Ⅰ#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
点Pは原点を出発して確率p(0P1)+1, 1p+2進む.
自然数nの地点に到達する確率Pnを求めよ.

大阪教育大過去問
この動画を見る 

福田の数学〜早稲田大学2021年教育学部第4問〜三角形の個数を数える

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
4 
1辺の長さが1の正三角形を下図(※動画参照)のように積んでいく。図の中には大きさの異なったいくつかの正三角形が含まれているが、底辺が下側にあるものを「上向きの正三角形」、底辺が上側にあるものを「下向きを正三角形」とよぶことにする。例えば、この図(※動画参照)は1辺の長さが1の正三角形を4段積んだものであり、1辺の長さが1の上向きの正三角形は10個あり、1辺の長さが2の上向き正三角形は6個ある。
また1辺の長さが1の下向きの正三角形は6個ある。上向きの正三角形の総数は20であり、下向きの正三角形の総数は7である。こうした正三角形の個数に関して次の問いに答えよ。
(1)1辺の長さが1の正三角形を5段積んだとき、上向きと下向きとを合わせた正三角形の総数を求めよ。
(2)1辺の長さが1の正三角形をn段(ただしnは自然数)積んだとき、上向きの正三角形の総数を求めよ。
(3)1辺の長さが1の正三角形をn段(ただしnは自然数)積んだとき、下向きの正三角形の総数を求めよ。
この動画を見る 

福田の数学〜早稲田大学2024年理工学部第4問〜確率漸化式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数B
指導講師: 福田次郎
問題文全文(内容文):
4 2つのチームW, Kn回試合を行う。ただしn≧2とする。各試合でのW, Kそれぞれの勝つ確率は12とし、引き分けはないものとする。Wが連敗しない確率をpnとする。ただし、連敗とは2回以上続けて負けることを言う。
(1)p3を求めよ。
(2)pn+2pn+1pnを用いて表せ。
(3)以下の2式を満たすα, βを求めよ。ただし、α<βとする。
pn+2βpn+1=α(pn+1βpn)
pn+2αpn+1=β(pn+1αpn)
(4)pn を求めよ。
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第3問〜数列と漸化式、余りの問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3
数列{an}は、初項a10であり、n=1,2,3,のとき次の漸化式を
満たすものとする。
an+1=n+3n+1{3an+3n+1(n+1)(n+2)} 

(1)a2=     である。

(2)bn=an3n(n+1)(n+2)とおき、数列{bn}の一般項を求めよう。
{bn}の初項b1    である。①の両辺を3n+1(n+2)(n+3)
割ると
bn+1=bn+    (n+    )(n+    )(1    )n+1

を得る。ただし、    <    とする。

したがって

bn+1bn=(    n+        n+    )(1    )n+1
である。

nを2以上の自然数とするとき

k=1n1(    k+        k+    )=1    (n    n+    )

k=1n1(1    )k+1=                (1    )n

が成り立つことを利用すると

bn=n        (n+    )+        (1    )n

が得られる。これはn=1のときも成り立つ。

(3)(2)により、{an}の一般項は
an=    n(n2    )+(n+    )(n+    )    

で与えられる。ただし、    <    とする。
このことから、すべての自然数nについて、
anは整数となることが分かる。

(4)kを自然数とする。a3k,a3k+1,a3k+2で割った余りはそれぞれ
    ,     ,     である。また、{an}の初項から
第2020項までの和を3で割った余りは    である。

2020センター試験過去問
この動画を見る 

東京医科大 見掛け倒しな問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#東京医科大学#東京医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
1008の正の約数n個を大きい順に並べた数列を
a1,a2,anとし、S(x)S(x)=k=1nakxとする。
S(0)S(1)S(1)S(2)S(1)
この動画を見る 
PAGE TOP preload imagepreload image