兵庫医科大 3項間漸化式 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

兵庫医科大 3項間漸化式 Mathematics Japanese university entrance exam

問題文全文(内容文):
$a_{1}=1$ $a_{2}=4$
$a_{n+2}=4a_{n+1}-3a_{n}-2$
一般項を求めよ

出典:2002年兵庫医科大学 過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#兵庫医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$ $a_{2}=4$
$a_{n+2}=4a_{n+1}-3a_{n}-2$
一般項を求めよ

出典:2002年兵庫医科大学 過去問
投稿日:2019.02.13

<関連動画>

福田の数学〜立教大学2025理学部第4問〜整式がある数の倍数であることの証明

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$

$n$を$2$以上の自然数とする。次の問いに答えよ。

(1)$n^3-n$は$6$のばいすうであることを示せ。

(2)$n^4+2n^3-n^2-2n$は$24$の倍数であることを示せ。

(3)$n$に関する数学的帰納法を用いて、

$n^5+4n$は$5$の倍数であることを示せ。

(4)$n^9+2n^8-n^7-2n^6+4n^5+8n^4-4n^3-8n^2$は

$120$の倍数であることを示せ。

$2025$年立教大学理学部過去問題
この動画を見る 

長岡技術科大 ナイスな問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
2008長岡技術科学大学過去問題
①$\displaystyle\sum_{n=2}^{\infty}\frac{1}{n^2-\frac{1}{4}}$を求めよ
②$\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2}<\frac{5}{3}$を示せ
この動画を見る 

【数B】数列:部分分数分解の基本! 次の和S[n]を求めよ。S[n]=1/(1×5)+1/(5×9)+1/(9×13)+...+1/(4n-3)(4n+1)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の和$S_n$を求めよ。
$S_n=\dfrac{1}{1・5}+\dfrac{1}{5・9}+\dfrac{1}{9・13}+...+\dfrac{1}{(4n-3)(4n-1)}$
この動画を見る 

2025年度入試に出るかも?~答えが2025になる計算問題~

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2025年度入試に出るかも?
「答えが2025になる計算問題」について解説しています。
※問題文は動画内参照
この動画を見る 

漸化式と整数問題の融合

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$a_1=10,a_{n+1}=2a_n+3^{n+1}$
$a_n$が7の倍数となるような$n$を求めよ.
この動画を見る 
PAGE TOP