大学入試問題#6 学習院大学(2021) 対数 - 質問解決D.B.(データベース)

大学入試問題#6 学習院大学(2021) 対数

問題文全文(内容文):
$log_2(log_2(x-2)-log_{\frac{1}{2}}(x-4))=2$を解け。

出典:2021年学習院大学 入試問題
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$log_2(log_2(x-2)-log_{\frac{1}{2}}(x-4))=2$を解け。

出典:2021年学習院大学 入試問題
投稿日:2021.09.07

<関連動画>

東北大 対数方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
東北大学過去問題
連立方程式を解け
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^y = y^x \\
log_xy + log_yx = \frac{13}{6}
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

航空大学校 対数の基本

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$5^{\log_{10}5x}=7^{\log_{10}7x}$
$35^{\log_{10}35}\times 35^{\log_{10}x}$の値を求めよ.

航空大学校過去問
この動画を見る 

浜松医大 対数の基本 数3不要

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)2進法で30桁の自然数nを10進法で表すと何桁か,
$\log_{10}=0.3010$

(2)自然数nを2進法で表すと$a_n$桁となる.
$\displaystyle \lim_{ n \to \(x) } \dfrac{\log_{10}n}{a_n}$を求めよ.

浜松医大過去問
この動画を見る 

京大!?教科書レベル!?解けますよね?【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
8.94^18の整数部分は何桁か。また、最高位からの2桁の数字を求めよ。例えば、12345.6789の最高位の2桁は12を指す。
ただし、0.951<log10_8.94<0.952, 0.113<log10_1.3<0.114, 0.146<log10_1.4<0.147 であることは用いてよい。
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(3)〜集合と対数不等式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)関数$f(x)=\log_{\frac{1}{3}}\sqrt{3x^3-2x^2}$と$g(x)=\log_9(3x^2-2)$の定義域をそれぞれ
集合A,Bで表すと、$A\cap B=\left\{x|xはx \gt \boxed{\ \ オ\ \ }$を満たす実数である。
実数xが集合$A\cap B$の要素であるとき、$f(x)+g(x) \lt 0$となるための条件は
$\boxed{\ \ オ\ \ } \lt x \lt \boxed{\ \ カ\ \ }$または$x \gt \boxed{\ \ キ\ \ }$となることである。

2022慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP