問題文全文(内容文):
連続関数$f(x)$で
$f(x)=e^x \displaystyle \int_{0}^{1} \{f(t)\}^2 dt$
を満たすものを求めよ.
2004東京都市大学過去問題
連続関数$f(x)$で
$f(x)=e^x \displaystyle \int_{0}^{1} \{f(t)\}^2 dt$
を満たすものを求めよ.
2004東京都市大学過去問題
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#武蔵工業大学
指導講師:
ますただ
問題文全文(内容文):
連続関数$f(x)$で
$f(x)=e^x \displaystyle \int_{0}^{1} \{f(t)\}^2 dt$
を満たすものを求めよ.
2004東京都市大学過去問題
連続関数$f(x)$で
$f(x)=e^x \displaystyle \int_{0}^{1} \{f(t)\}^2 dt$
を満たすものを求めよ.
2004東京都市大学過去問題
投稿日:2024.09.17





